Fosse, J., Seegers, H., & Magras, C. (2007). Foodborne zoonoses due to meat: a quantitative approach for a comparative risk assessment applied to pig slaughtering in Europe. Veterinary Research, 39(1), 01. doi:10.1051/vetres:2007039
FSIS Compliance Guideline Controlling Listeria monocytogenes in Post-Lethality Exposed Ready-to-Eat Meat and Poultry Products Washington, DC FSIS 2014 https://www.fsis.usda.gov/wps/wcm/connect/d3373299-50e6-47d6-a577-e74a1e549fde/Controlling-Lm-RTE-Guideline.pdf?MOD=AJPERES
FSIS Salmonella Compliance Guidelines for Small and Very Small Meat and Poultry Establishments that Produce Ready to Eat Products Washington, DC FSIS 2012 https://www.fsis.usda.gov/wps/wcm/connect/2ed353b4-7a3a-4f31-80d8-20262c1950c8/Salmonella_Comp_Guide_091912.pdf?MOD=AJPERES
[+]
Fosse, J., Seegers, H., & Magras, C. (2007). Foodborne zoonoses due to meat: a quantitative approach for a comparative risk assessment applied to pig slaughtering in Europe. Veterinary Research, 39(1), 01. doi:10.1051/vetres:2007039
FSIS Compliance Guideline Controlling Listeria monocytogenes in Post-Lethality Exposed Ready-to-Eat Meat and Poultry Products Washington, DC FSIS 2014 https://www.fsis.usda.gov/wps/wcm/connect/d3373299-50e6-47d6-a577-e74a1e549fde/Controlling-Lm-RTE-Guideline.pdf?MOD=AJPERES
FSIS Salmonella Compliance Guidelines for Small and Very Small Meat and Poultry Establishments that Produce Ready to Eat Products Washington, DC FSIS 2012 https://www.fsis.usda.gov/wps/wcm/connect/2ed353b4-7a3a-4f31-80d8-20262c1950c8/Salmonella_Comp_Guide_091912.pdf?MOD=AJPERES
BRC Global Standard for Food Safety Washington, DC FSIS 2015 http://www.vikan.com/media/633484/brc-global-standard-for-food-safety-issue-7-uk-free-pdf.pdf
Becker, A., Boulaaba, A., Pingen, S., Krischek, C., & Klein, G. (2016). Low temperature cooking of pork meat — Physicochemical and sensory aspects. Meat Science, 118, 82-88. doi:10.1016/j.meatsci.2016.03.026
Bejerholm, C., & Aaslyng, M. D. (2004). The influence of cooking technique and core temperature on results of a sensory analysis of pork—depending on the raw meat quality. Food Quality and Preference, 15(1), 19-30. doi:10.1016/s0950-3293(03)00018-1
Christensen, L., Gunvig, A., Tørngren, M. A., Aaslyng, M. D., Knøchel, S., & Christensen, M. (2012). Sensory characteristics of meat cooked for prolonged times at low temperature. Meat Science, 90(2), 485-489. doi:10.1016/j.meatsci.2011.09.012
Christensen, L., Ertbjerg, P., Aaslyng, M. D., & Christensen, M. (2011). Effect of prolonged heat treatment from 48°C to 63°C on toughness, cooking loss and color of pork. Meat Science, 88(2), 280-285. doi:10.1016/j.meatsci.2010.12.035
Moeller, S. J., Miller, R. K., Aldredge, T. L., Logan, K. E., Edwards, K. K., Zerby, H. N., … Stahl, C. A. (2010). Trained sensory perception of pork eating quality as affected by fresh and cooked pork quality attributes and end-point cooked temperature. Meat Science, 85(1), 96-103. doi:10.1016/j.meatsci.2009.12.011
Crawford, S. M., Moeller, S. J., Zerby, H. N., Irvin, K. M., Kuber, P. S., Velleman, S. G., & Leeds, T. D. (2010). Effects of cooked temperature on pork tenderness and relationships among muscle physiology and pork quality traits in loins from Landrace and Berkshire swine. Meat Science, 84(4), 607-612. doi:10.1016/j.meatsci.2009.10.019
Killinger, K. M., Calkins, C. R., Umberger, W. J., Feuz, D. M., & Eskridge, K. M. (2004). A comparison of consumer sensory acceptance and value of domestic beef steaks and steaks from a branded, Argentine beef program1,2. Journal of Animal Science, 82(11), 3302-3307. doi:10.2527/2004.82113302x
López Osornio, M. M., Hough, G., Salvador, A., Chambers, E., McGraw, S., & Fiszman, S. (2008). Beef’s optimum internal cooking temperature as seen by consumers from different countries using survival analysis statistics. Food Quality and Preference, 19(1), 12-20. doi:10.1016/j.foodqual.2007.06.004
Russell, C. ., & Cox, D. . (2004). Understanding middle-aged consumers’ perceptions of meat using repertory grid methodology. Food Quality and Preference, 15(4), 317-329. doi:10.1016/s0950-3293(03)00073-9
Gong, S. L., Yang, Y. S., Shen, H., Wang, X. Y., Guo, H. P., & Bai, L. (2011). Meat handling practices in households of Mainland China. Food Control, 22(5), 749-755. doi:10.1016/j.foodcont.2010.11.009
EURL Lm Technical Guidance Document for Conducting Shelf-Life Studies on Listeria monocytogenes in Ready to Eat Foods Maison Alfort, France ANSES 2014 file:///E:/Ale/Paper%20Cottura/Submission/Revisione/EURL%20Lm_Technical%20Guidance%20Document%20Lm%20shelf-life%20studies_V3_2014-06-06.pdf
WESLEY, I. V., HARMON, K. M., DICKSON, J. S., & SCHWARTZ, A. R. (2002). Application of a Multiplex Polymerase Chain Reaction Assay for the Simultaneous Confirmation of Listeria monocytogenes and Other Listeria Species in Turkey Sample Surveillance†. Journal of Food Protection, 65(5), 780-785. doi:10.4315/0362-028x-65.5.780
ComBase 2016. http://www.combase.cc/index.php/es/
Koseki, S. (2009). Microbial Responses Viewer (MRV): A new ComBase-derived database of microbial responses to food environments. International Journal of Food Microbiology, 134(1-2), 75-82. doi:10.1016/j.ijfoodmicro.2008.12.019
De Cesare, A., Vitali, S., Trevisani, M., Bovo, F., & Manfreda, G. (2016). Microbiological and Modeling Approach to Derive Performance Objectives forBacillus cereusGroup in Ready-to-Eat Salads. Risk Analysis, 37(3), 408-420. doi:10.1111/risa.12617
Swart, A. N., van Leusden, F., & Nauta, M. J. (2016). A QMRA Model forSalmonellain Pork Products During Preparation and Consumption. Risk Analysis, 36(3), 516-530. doi:10.1111/risa.12522
Awaiwanont, N., Smulders, F. J. M., & Paulsen, P. (2015). Growth potential of Listeria monocytogenes in traditional Austrian cooked-cured meat products. Food Control, 50, 150-156. doi:10.1016/j.foodcont.2014.08.043
Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81(5), 501-508. doi:10.1111/j.1365-2672.1996.tb03539.x
Chen, G., Campanella, O. H., Corvalan, C. M., & Haley, T. A. (2008). On-line correction of process temperature deviations in continuous retorts. Journal of Food Engineering, 84(2), 258-269. doi:10.1016/j.jfoodeng.2007.05.017
VELASQUEZ, A., BRESLIN, T. J., MARKS, B. P., ORTA-RAMIREZ, A., HALL, N. O., BOOREN, A. M., & RYSER, E. T. (2010). Enhanced Thermal Resistance of Salmonella in Marinated Whole Muscle Compared with Ground Pork. Journal of Food Protection, 73(2), 372-375. doi:10.4315/0362-028x-73.2.372
Pouillot, R., Klontz, K. C., Chen, Y., Burall, L. S., Macarisin, D., Doyle, M., … Van Doren, J. M. (2016). Infectious Dose ofListeria monocytogenesin Outbreak Linked to Ice Cream, United States, 2015. Emerging Infectious Diseases, 22(12), 2113-2119. doi:10.3201/eid2212.160165
EFSA The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA Journal 2015 13 1 1 125
Manfreda, G., & De Cesare, A. (2014). The challenge of defining risk-based metrics to improve food safety: Inputs from the BASELINE project. International Journal of Food Microbiology, 184, 2-7. doi:10.1016/j.ijfoodmicro.2014.01.013
EFSA Risk Assessment of Food-Borne Bacterial Pathogens: Quantitative Methodology Relevant for Human Exposure Assessment Parma, Italy EFSA 2016 http://orbit.dtu.dk/files/4039039/out252_en.pdf
Ryser, E. T., Ryser, E. T., & Marth, E. H. (Eds.). (2007). Listeria, Listeriosis, and Food Safety. doi:10.1201/9781420015188
Juneja, V. K., Eblen, B. S., & Ransom, G. M. (2001). Thermal Inactivation of Salmonella spp. in Chicken Broth, Beef, Pork, Turkey, and Chicken: Determination of D- and Z-values. Journal of Food Science, 66(1), 146-152. doi:10.1111/j.1365-2621.2001.tb15597.x
Quintavalla, S., Larini, S., Mutti, P., & Barbuti, S. (2001). Evaluation of the thermal resistance of different Salmonella serotypes in pork meat containing curing additives. International Journal of Food Microbiology, 67(1-2), 107-114. doi:10.1016/s0168-1605(01)00430-5
OSAILI, T., GRIFFIS, C. L., MARTIN, E. M., BEARD, B. L., KEENER, A., & MARCY, J. A. (2006). Thermal Inactivation Studies of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in Ready-to-Eat Chicken-Fried Beef Patties. Journal of Food Protection, 69(5), 1080-1086. doi:10.4315/0362-028x-69.5.1080
Sergelidis, D., & Abrahim, A. (2009). Adaptive response of Listeria monocytogenes to heat and its impact on food safety. Food Control, 20(1), 1-10. doi:10.1016/j.foodcont.2008.01.006
Ross, T. (2000). Predictive modelling of the growth and survival of Listeria in fishery products. International Journal of Food Microbiology, 62(3), 231-245. doi:10.1016/s0168-1605(00)00340-8
De Cesare, A., Valero, A., Lucchi, A., Pasquali, F., & Manfreda, G. (2013). Modeling growth kinetics of Listeria monocytogenes in pork cuts from packaging to fork under different storage practices. Food Control, 34(1), 198-207. doi:10.1016/j.foodcont.2013.04.027
McMeekin, T. A., Olley, J., Ratkowsky, D. A., & Ross, T. (2002). Predictive microbiology: towards the interface and beyond. International Journal of Food Microbiology, 73(2-3), 395-407. doi:10.1016/s0168-1605(01)00663-8
McMeekin, T. A. (1997). Quantitative Microbiology: A Basis for Food Safety. Emerging Infectious Diseases, 3(4), 541-549. doi:10.3201/eid0304.970419
Ross, T., Ratkowsky, D. A., Mellefont, L. A., & McMeekin, T. A. (2003). Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. International Journal of Food Microbiology, 82(1), 33-43. doi:10.1016/s0168-1605(02)00252-0
Van Boekel, M. A. J. S. (2008). Kinetic Modeling of Food Quality: A Critical Review. Comprehensive Reviews in Food Science and Food Safety, 7(1), 144-158. doi:10.1111/j.1541-4337.2007.00036.x
[-]