- -

Impact of Cooking Procedures and Storage Practices at Home on Consumer Exposure to Listeria Monocytogenes and Salmonella Due to the Consumption of Pork Meat

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Impact of Cooking Procedures and Storage Practices at Home on Consumer Exposure to Listeria Monocytogenes and Salmonella Due to the Consumption of Pork Meat

Show full item record

De Cesare, A.; Doménech Antich, EM.; Comin, D.; Meluzzi, A.; Manfreda, G. (2017). Impact of Cooking Procedures and Storage Practices at Home on Consumer Exposure to Listeria Monocytogenes and Salmonella Due to the Consumption of Pork Meat. Risk Analysis. 38(4):638-652. https://doi.org/10.1111/risa.12882

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140898

Files in this item

Item Metadata

Title: Impact of Cooking Procedures and Storage Practices at Home on Consumer Exposure to Listeria Monocytogenes and Salmonella Due to the Consumption of Pork Meat
Author: De Cesare, Alessandra Doménech Antich, Eva Mª Comin, Damiano Meluzzi, Adele Manfreda, Gerardo
UPV Unit: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Issued date:
Abstract:
[EN] The objective of this research was to analyze the impact of different cooking procedures (i.e., gas hob and traditional static oven) and levels of cooking (i.e., rare, medium, and well-done) on inactivation of Listeria ...[+]
Subjects: Consumers , Cooking practices , Exposure assessment , Listeria monocytogenes , Salmonella
Copyrigths: Reserva de todos los derechos
Source:
Risk Analysis. (issn: 0272-4332 )
DOI: 10.1111/risa.12882
Publisher:
Blackwell Publishing
Publisher version: https://doi.org/10.1111/risa.12882
Project ID:
info:eu-repo/grantAgreement/EC/FP7/222738/EU/Selection and improving of fit-for-purpose sampling procedures for specific foods and risks/
Thanks:
The research leading to these results received funding from the E.U. Seventh Framework Programme under grant agreement KBBE 222738BASELINE (Selection and Improving of Fit-for-Purpose Sampling Procedures for Specific Foods ...[+]
Type: Artículo

References

Fosse, J., Seegers, H., & Magras, C. (2007). Foodborne zoonoses due to meat: a quantitative approach for a comparative risk assessment applied to pig slaughtering in Europe. Veterinary Research, 39(1), 01. doi:10.1051/vetres:2007039

FSIS Compliance Guideline Controlling Listeria monocytogenes in Post-Lethality Exposed Ready-to-Eat Meat and Poultry Products Washington, DC FSIS 2014 https://www.fsis.usda.gov/wps/wcm/connect/d3373299-50e6-47d6-a577-e74a1e549fde/Controlling-Lm-RTE-Guideline.pdf?MOD=AJPERES

FSIS Salmonella Compliance Guidelines for Small and Very Small Meat and Poultry Establishments that Produce Ready to Eat Products Washington, DC FSIS 2012 https://www.fsis.usda.gov/wps/wcm/connect/2ed353b4-7a3a-4f31-80d8-20262c1950c8/Salmonella_Comp_Guide_091912.pdf?MOD=AJPERES [+]
Fosse, J., Seegers, H., & Magras, C. (2007). Foodborne zoonoses due to meat: a quantitative approach for a comparative risk assessment applied to pig slaughtering in Europe. Veterinary Research, 39(1), 01. doi:10.1051/vetres:2007039

FSIS Compliance Guideline Controlling Listeria monocytogenes in Post-Lethality Exposed Ready-to-Eat Meat and Poultry Products Washington, DC FSIS 2014 https://www.fsis.usda.gov/wps/wcm/connect/d3373299-50e6-47d6-a577-e74a1e549fde/Controlling-Lm-RTE-Guideline.pdf?MOD=AJPERES

FSIS Salmonella Compliance Guidelines for Small and Very Small Meat and Poultry Establishments that Produce Ready to Eat Products Washington, DC FSIS 2012 https://www.fsis.usda.gov/wps/wcm/connect/2ed353b4-7a3a-4f31-80d8-20262c1950c8/Salmonella_Comp_Guide_091912.pdf?MOD=AJPERES

BRC Global Standard for Food Safety Washington, DC FSIS 2015 http://www.vikan.com/media/633484/brc-global-standard-for-food-safety-issue-7-uk-free-pdf.pdf

Becker, A., Boulaaba, A., Pingen, S., Krischek, C., & Klein, G. (2016). Low temperature cooking of pork meat — Physicochemical and sensory aspects. Meat Science, 118, 82-88. doi:10.1016/j.meatsci.2016.03.026

Bejerholm, C., & Aaslyng, M. D. (2004). The influence of cooking technique and core temperature on results of a sensory analysis of pork—depending on the raw meat quality. Food Quality and Preference, 15(1), 19-30. doi:10.1016/s0950-3293(03)00018-1

Christensen, L., Gunvig, A., Tørngren, M. A., Aaslyng, M. D., Knøchel, S., & Christensen, M. (2012). Sensory characteristics of meat cooked for prolonged times at low temperature. Meat Science, 90(2), 485-489. doi:10.1016/j.meatsci.2011.09.012

Christensen, L., Ertbjerg, P., Aaslyng, M. D., & Christensen, M. (2011). Effect of prolonged heat treatment from 48°C to 63°C on toughness, cooking loss and color of pork. Meat Science, 88(2), 280-285. doi:10.1016/j.meatsci.2010.12.035

Moeller, S. J., Miller, R. K., Aldredge, T. L., Logan, K. E., Edwards, K. K., Zerby, H. N., … Stahl, C. A. (2010). Trained sensory perception of pork eating quality as affected by fresh and cooked pork quality attributes and end-point cooked temperature. Meat Science, 85(1), 96-103. doi:10.1016/j.meatsci.2009.12.011

Crawford, S. M., Moeller, S. J., Zerby, H. N., Irvin, K. M., Kuber, P. S., Velleman, S. G., & Leeds, T. D. (2010). Effects of cooked temperature on pork tenderness and relationships among muscle physiology and pork quality traits in loins from Landrace and Berkshire swine. Meat Science, 84(4), 607-612. doi:10.1016/j.meatsci.2009.10.019

Killinger, K. M., Calkins, C. R., Umberger, W. J., Feuz, D. M., & Eskridge, K. M. (2004). A comparison of consumer sensory acceptance and value of domestic beef steaks and steaks from a branded, Argentine beef program1,2. Journal of Animal Science, 82(11), 3302-3307. doi:10.2527/2004.82113302x

López Osornio, M. M., Hough, G., Salvador, A., Chambers, E., McGraw, S., & Fiszman, S. (2008). Beef’s optimum internal cooking temperature as seen by consumers from different countries using survival analysis statistics. Food Quality and Preference, 19(1), 12-20. doi:10.1016/j.foodqual.2007.06.004

Russell, C. ., & Cox, D. . (2004). Understanding middle-aged consumers’ perceptions of meat using repertory grid methodology. Food Quality and Preference, 15(4), 317-329. doi:10.1016/s0950-3293(03)00073-9

Gong, S. L., Yang, Y. S., Shen, H., Wang, X. Y., Guo, H. P., & Bai, L. (2011). Meat handling practices in households of Mainland China. Food Control, 22(5), 749-755. doi:10.1016/j.foodcont.2010.11.009

EURL Lm Technical Guidance Document for Conducting Shelf-Life Studies on Listeria monocytogenes in Ready to Eat Foods Maison Alfort, France ANSES 2014 file:///E:/Ale/Paper%20Cottura/Submission/Revisione/EURL%20Lm_Technical%20Guidance%20Document%20Lm%20shelf-life%20studies_V3_2014-06-06.pdf

WESLEY, I. V., HARMON, K. M., DICKSON, J. S., & SCHWARTZ, A. R. (2002). Application of a Multiplex Polymerase Chain Reaction Assay for the Simultaneous Confirmation of Listeria monocytogenes and Other Listeria Species in Turkey Sample Surveillance†. Journal of Food Protection, 65(5), 780-785. doi:10.4315/0362-028x-65.5.780

ComBase 2016. http://www.combase.cc/index.php/es/

Koseki, S. (2009). Microbial Responses Viewer (MRV): A new ComBase-derived database of microbial responses to food environments. International Journal of Food Microbiology, 134(1-2), 75-82. doi:10.1016/j.ijfoodmicro.2008.12.019

De Cesare, A., Vitali, S., Trevisani, M., Bovo, F., & Manfreda, G. (2016). Microbiological and Modeling Approach to Derive Performance Objectives forBacillus cereusGroup in Ready-to-Eat Salads. Risk Analysis, 37(3), 408-420. doi:10.1111/risa.12617

Swart, A. N., van Leusden, F., & Nauta, M. J. (2016). A QMRA Model forSalmonellain Pork Products During Preparation and Consumption. Risk Analysis, 36(3), 516-530. doi:10.1111/risa.12522

Awaiwanont, N., Smulders, F. J. M., & Paulsen, P. (2015). Growth potential of Listeria monocytogenes in traditional Austrian cooked-cured meat products. Food Control, 50, 150-156. doi:10.1016/j.foodcont.2014.08.043

Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81(5), 501-508. doi:10.1111/j.1365-2672.1996.tb03539.x

Chen, G., Campanella, O. H., Corvalan, C. M., & Haley, T. A. (2008). On-line correction of process temperature deviations in continuous retorts. Journal of Food Engineering, 84(2), 258-269. doi:10.1016/j.jfoodeng.2007.05.017

VELASQUEZ, A., BRESLIN, T. J., MARKS, B. P., ORTA-RAMIREZ, A., HALL, N. O., BOOREN, A. M., & RYSER, E. T. (2010). Enhanced Thermal Resistance of Salmonella in Marinated Whole Muscle Compared with Ground Pork. Journal of Food Protection, 73(2), 372-375. doi:10.4315/0362-028x-73.2.372

Pouillot, R., Klontz, K. C., Chen, Y., Burall, L. S., Macarisin, D., Doyle, M., … Van Doren, J. M. (2016). Infectious Dose ofListeria monocytogenesin Outbreak Linked to Ice Cream, United States, 2015. Emerging Infectious Diseases, 22(12), 2113-2119. doi:10.3201/eid2212.160165

EFSA The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA Journal 2015 13 1 1 125

Manfreda, G., & De Cesare, A. (2014). The challenge of defining risk-based metrics to improve food safety: Inputs from the BASELINE project. International Journal of Food Microbiology, 184, 2-7. doi:10.1016/j.ijfoodmicro.2014.01.013

EFSA Risk Assessment of Food-Borne Bacterial Pathogens: Quantitative Methodology Relevant for Human Exposure Assessment Parma, Italy EFSA 2016 http://orbit.dtu.dk/files/4039039/out252_en.pdf

Ryser, E. T., Ryser, E. T., & Marth, E. H. (Eds.). (2007). Listeria, Listeriosis, and Food Safety. doi:10.1201/9781420015188

Juneja, V. K., Eblen, B. S., & Ransom, G. M. (2001). Thermal Inactivation of Salmonella spp. in Chicken Broth, Beef, Pork, Turkey, and Chicken: Determination of D- and Z-values. Journal of Food Science, 66(1), 146-152. doi:10.1111/j.1365-2621.2001.tb15597.x

Quintavalla, S., Larini, S., Mutti, P., & Barbuti, S. (2001). Evaluation of the thermal resistance of different Salmonella serotypes in pork meat containing curing additives. International Journal of Food Microbiology, 67(1-2), 107-114. doi:10.1016/s0168-1605(01)00430-5

OSAILI, T., GRIFFIS, C. L., MARTIN, E. M., BEARD, B. L., KEENER, A., & MARCY, J. A. (2006). Thermal Inactivation Studies of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in Ready-to-Eat Chicken-Fried Beef Patties. Journal of Food Protection, 69(5), 1080-1086. doi:10.4315/0362-028x-69.5.1080

Sergelidis, D., & Abrahim, A. (2009). Adaptive response of Listeria monocytogenes to heat and its impact on food safety. Food Control, 20(1), 1-10. doi:10.1016/j.foodcont.2008.01.006

Ross, T. (2000). Predictive modelling of the growth and survival of Listeria in fishery products. International Journal of Food Microbiology, 62(3), 231-245. doi:10.1016/s0168-1605(00)00340-8

De Cesare, A., Valero, A., Lucchi, A., Pasquali, F., & Manfreda, G. (2013). Modeling growth kinetics of Listeria monocytogenes in pork cuts from packaging to fork under different storage practices. Food Control, 34(1), 198-207. doi:10.1016/j.foodcont.2013.04.027

McMeekin, T. A., Olley, J., Ratkowsky, D. A., & Ross, T. (2002). Predictive microbiology: towards the interface and beyond. International Journal of Food Microbiology, 73(2-3), 395-407. doi:10.1016/s0168-1605(01)00663-8

McMeekin, T. A. (1997). Quantitative Microbiology: A Basis for Food Safety. Emerging Infectious Diseases, 3(4), 541-549. doi:10.3201/eid0304.970419

Ross, T., Ratkowsky, D. A., Mellefont, L. A., & McMeekin, T. A. (2003). Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. International Journal of Food Microbiology, 82(1), 33-43. doi:10.1016/s0168-1605(02)00252-0

Van Boekel, M. A. J. S. (2008). Kinetic Modeling of Food Quality: A Critical Review. Comprehensive Reviews in Food Science and Food Safety, 7(1), 144-158. doi:10.1111/j.1541-4337.2007.00036.x

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record