Mostrar el registro sencillo del ítem
dc.contributor.author | De Cesare, Alessandra | es_ES |
dc.contributor.author | Doménech Antich, Eva Mª | es_ES |
dc.contributor.author | Comin, Damiano | es_ES |
dc.contributor.author | Meluzzi, Adele | es_ES |
dc.contributor.author | Manfreda, Gerardo | es_ES |
dc.date.accessioned | 2020-04-17T12:49:53Z | |
dc.date.available | 2020-04-17T12:49:53Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0272-4332 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140898 | |
dc.description.abstract | [EN] The objective of this research was to analyze the impact of different cooking procedures (i.e., gas hob and traditional static oven) and levels of cooking (i.e., rare, medium, and well-done) on inactivation of Listeria monocytogenes and Salmonella in pork loin chops. Moreover, the consumer's exposure to both microorganisms after simulation of meat leftover storage at home was assessed. The results showed that well-done cooking in a static oven was the only treatment able to inactivate the tested pathogens. The other cooking combinations allowed to reach in the product temperatures always 73.6 degrees C, decreasing both pathogens between 6 log(10) cfu/g and 7 log(10) cfu/g. However, according to simulation results, the few cells surviving cooking treatments can multiply during storage by consumers up to 1 log(10) cfu/g, with probabilities of 0.059 (gas hob) and 0.035 (static oven) for L. monocytogenes and 0.049 (gas hob) and 0.031 (static oven) for Salmonella. The key factors affecting consumer exposure in relation to storage practices were probability of pathogen occurrence after cooking, doneness degree, time of storage, and time of storage at room temperature. The results of this study can be combined with prevalence data and dose-response models in risk assessment models and included in guidelines for consumers on practices to be followed to manage cooking of pork meat at home. | es_ES |
dc.description.sponsorship | The research leading to these results received funding from the E.U. Seventh Framework Programme under grant agreement KBBE 222738BASELINE (Selection and Improving of Fit-for-Purpose Sampling Procedures for Specific Foods and Risks). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Risk Analysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Consumers | es_ES |
dc.subject | Cooking practices | es_ES |
dc.subject | Exposure assessment | es_ES |
dc.subject | Listeria monocytogenes | es_ES |
dc.subject | Salmonella | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Impact of Cooking Procedures and Storage Practices at Home on Consumer Exposure to Listeria Monocytogenes and Salmonella Due to the Consumption of Pork Meat | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/risa.12882 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/222738/EU/Selection and improving of fit-for-purpose sampling procedures for specific foods and risks/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | De Cesare, A.; Doménech Antich, EM.; Comin, D.; Meluzzi, A.; Manfreda, G. (2017). Impact of Cooking Procedures and Storage Practices at Home on Consumer Exposure to Listeria Monocytogenes and Salmonella Due to the Consumption of Pork Meat. Risk Analysis. 38(4):638-652. https://doi.org/10.1111/risa.12882 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/risa.12882 | es_ES |
dc.description.upvformatpinicio | 638 | es_ES |
dc.description.upvformatpfin | 652 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 38 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\352725 | es_ES |
dc.description.references | Fosse, J., Seegers, H., & Magras, C. (2007). Foodborne zoonoses due to meat: a quantitative approach for a comparative risk assessment applied to pig slaughtering in Europe. Veterinary Research, 39(1), 01. doi:10.1051/vetres:2007039 | es_ES |
dc.description.references | FSIS Compliance Guideline Controlling Listeria monocytogenes in Post-Lethality Exposed Ready-to-Eat Meat and Poultry Products Washington, DC FSIS 2014 https://www.fsis.usda.gov/wps/wcm/connect/d3373299-50e6-47d6-a577-e74a1e549fde/Controlling-Lm-RTE-Guideline.pdf?MOD=AJPERES | es_ES |
dc.description.references | FSIS Salmonella Compliance Guidelines for Small and Very Small Meat and Poultry Establishments that Produce Ready to Eat Products Washington, DC FSIS 2012 https://www.fsis.usda.gov/wps/wcm/connect/2ed353b4-7a3a-4f31-80d8-20262c1950c8/Salmonella_Comp_Guide_091912.pdf?MOD=AJPERES | es_ES |
dc.description.references | BRC Global Standard for Food Safety Washington, DC FSIS 2015 http://www.vikan.com/media/633484/brc-global-standard-for-food-safety-issue-7-uk-free-pdf.pdf | es_ES |
dc.description.references | Becker, A., Boulaaba, A., Pingen, S., Krischek, C., & Klein, G. (2016). Low temperature cooking of pork meat — Physicochemical and sensory aspects. Meat Science, 118, 82-88. doi:10.1016/j.meatsci.2016.03.026 | es_ES |
dc.description.references | Bejerholm, C., & Aaslyng, M. D. (2004). The influence of cooking technique and core temperature on results of a sensory analysis of pork—depending on the raw meat quality. Food Quality and Preference, 15(1), 19-30. doi:10.1016/s0950-3293(03)00018-1 | es_ES |
dc.description.references | Christensen, L., Gunvig, A., Tørngren, M. A., Aaslyng, M. D., Knøchel, S., & Christensen, M. (2012). Sensory characteristics of meat cooked for prolonged times at low temperature. Meat Science, 90(2), 485-489. doi:10.1016/j.meatsci.2011.09.012 | es_ES |
dc.description.references | Christensen, L., Ertbjerg, P., Aaslyng, M. D., & Christensen, M. (2011). Effect of prolonged heat treatment from 48°C to 63°C on toughness, cooking loss and color of pork. Meat Science, 88(2), 280-285. doi:10.1016/j.meatsci.2010.12.035 | es_ES |
dc.description.references | Moeller, S. J., Miller, R. K., Aldredge, T. L., Logan, K. E., Edwards, K. K., Zerby, H. N., … Stahl, C. A. (2010). Trained sensory perception of pork eating quality as affected by fresh and cooked pork quality attributes and end-point cooked temperature. Meat Science, 85(1), 96-103. doi:10.1016/j.meatsci.2009.12.011 | es_ES |
dc.description.references | Crawford, S. M., Moeller, S. J., Zerby, H. N., Irvin, K. M., Kuber, P. S., Velleman, S. G., & Leeds, T. D. (2010). Effects of cooked temperature on pork tenderness and relationships among muscle physiology and pork quality traits in loins from Landrace and Berkshire swine. Meat Science, 84(4), 607-612. doi:10.1016/j.meatsci.2009.10.019 | es_ES |
dc.description.references | Killinger, K. M., Calkins, C. R., Umberger, W. J., Feuz, D. M., & Eskridge, K. M. (2004). A comparison of consumer sensory acceptance and value of domestic beef steaks and steaks from a branded, Argentine beef program1,2. Journal of Animal Science, 82(11), 3302-3307. doi:10.2527/2004.82113302x | es_ES |
dc.description.references | López Osornio, M. M., Hough, G., Salvador, A., Chambers, E., McGraw, S., & Fiszman, S. (2008). Beef’s optimum internal cooking temperature as seen by consumers from different countries using survival analysis statistics. Food Quality and Preference, 19(1), 12-20. doi:10.1016/j.foodqual.2007.06.004 | es_ES |
dc.description.references | Russell, C. ., & Cox, D. . (2004). Understanding middle-aged consumers’ perceptions of meat using repertory grid methodology. Food Quality and Preference, 15(4), 317-329. doi:10.1016/s0950-3293(03)00073-9 | es_ES |
dc.description.references | Gong, S. L., Yang, Y. S., Shen, H., Wang, X. Y., Guo, H. P., & Bai, L. (2011). Meat handling practices in households of Mainland China. Food Control, 22(5), 749-755. doi:10.1016/j.foodcont.2010.11.009 | es_ES |
dc.description.references | EURL Lm Technical Guidance Document for Conducting Shelf-Life Studies on Listeria monocytogenes in Ready to Eat Foods Maison Alfort, France ANSES 2014 file:///E:/Ale/Paper%20Cottura/Submission/Revisione/EURL%20Lm_Technical%20Guidance%20Document%20Lm%20shelf-life%20studies_V3_2014-06-06.pdf | es_ES |
dc.description.references | WESLEY, I. V., HARMON, K. M., DICKSON, J. S., & SCHWARTZ, A. R. (2002). Application of a Multiplex Polymerase Chain Reaction Assay for the Simultaneous Confirmation of Listeria monocytogenes and Other Listeria Species in Turkey Sample Surveillance†. Journal of Food Protection, 65(5), 780-785. doi:10.4315/0362-028x-65.5.780 | es_ES |
dc.description.references | ComBase 2016. http://www.combase.cc/index.php/es/ | es_ES |
dc.description.references | Koseki, S. (2009). Microbial Responses Viewer (MRV): A new ComBase-derived database of microbial responses to food environments. International Journal of Food Microbiology, 134(1-2), 75-82. doi:10.1016/j.ijfoodmicro.2008.12.019 | es_ES |
dc.description.references | De Cesare, A., Vitali, S., Trevisani, M., Bovo, F., & Manfreda, G. (2016). Microbiological and Modeling Approach to Derive Performance Objectives forBacillus cereusGroup in Ready-to-Eat Salads. Risk Analysis, 37(3), 408-420. doi:10.1111/risa.12617 | es_ES |
dc.description.references | Swart, A. N., van Leusden, F., & Nauta, M. J. (2016). A QMRA Model forSalmonellain Pork Products During Preparation and Consumption. Risk Analysis, 36(3), 516-530. doi:10.1111/risa.12522 | es_ES |
dc.description.references | Awaiwanont, N., Smulders, F. J. M., & Paulsen, P. (2015). Growth potential of Listeria monocytogenes in traditional Austrian cooked-cured meat products. Food Control, 50, 150-156. doi:10.1016/j.foodcont.2014.08.043 | es_ES |
dc.description.references | Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81(5), 501-508. doi:10.1111/j.1365-2672.1996.tb03539.x | es_ES |
dc.description.references | Chen, G., Campanella, O. H., Corvalan, C. M., & Haley, T. A. (2008). On-line correction of process temperature deviations in continuous retorts. Journal of Food Engineering, 84(2), 258-269. doi:10.1016/j.jfoodeng.2007.05.017 | es_ES |
dc.description.references | VELASQUEZ, A., BRESLIN, T. J., MARKS, B. P., ORTA-RAMIREZ, A., HALL, N. O., BOOREN, A. M., & RYSER, E. T. (2010). Enhanced Thermal Resistance of Salmonella in Marinated Whole Muscle Compared with Ground Pork. Journal of Food Protection, 73(2), 372-375. doi:10.4315/0362-028x-73.2.372 | es_ES |
dc.description.references | Pouillot, R., Klontz, K. C., Chen, Y., Burall, L. S., Macarisin, D., Doyle, M., … Van Doren, J. M. (2016). Infectious Dose ofListeria monocytogenesin Outbreak Linked to Ice Cream, United States, 2015. Emerging Infectious Diseases, 22(12), 2113-2119. doi:10.3201/eid2212.160165 | es_ES |
dc.description.references | EFSA The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA Journal 2015 13 1 1 125 | es_ES |
dc.description.references | Manfreda, G., & De Cesare, A. (2014). The challenge of defining risk-based metrics to improve food safety: Inputs from the BASELINE project. International Journal of Food Microbiology, 184, 2-7. doi:10.1016/j.ijfoodmicro.2014.01.013 | es_ES |
dc.description.references | EFSA Risk Assessment of Food-Borne Bacterial Pathogens: Quantitative Methodology Relevant for Human Exposure Assessment Parma, Italy EFSA 2016 http://orbit.dtu.dk/files/4039039/out252_en.pdf | es_ES |
dc.description.references | Ryser, E. T., Ryser, E. T., & Marth, E. H. (Eds.). (2007). Listeria, Listeriosis, and Food Safety. doi:10.1201/9781420015188 | es_ES |
dc.description.references | Juneja, V. K., Eblen, B. S., & Ransom, G. M. (2001). Thermal Inactivation of Salmonella spp. in Chicken Broth, Beef, Pork, Turkey, and Chicken: Determination of D- and Z-values. Journal of Food Science, 66(1), 146-152. doi:10.1111/j.1365-2621.2001.tb15597.x | es_ES |
dc.description.references | Quintavalla, S., Larini, S., Mutti, P., & Barbuti, S. (2001). Evaluation of the thermal resistance of different Salmonella serotypes in pork meat containing curing additives. International Journal of Food Microbiology, 67(1-2), 107-114. doi:10.1016/s0168-1605(01)00430-5 | es_ES |
dc.description.references | OSAILI, T., GRIFFIS, C. L., MARTIN, E. M., BEARD, B. L., KEENER, A., & MARCY, J. A. (2006). Thermal Inactivation Studies of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in Ready-to-Eat Chicken-Fried Beef Patties. Journal of Food Protection, 69(5), 1080-1086. doi:10.4315/0362-028x-69.5.1080 | es_ES |
dc.description.references | Sergelidis, D., & Abrahim, A. (2009). Adaptive response of Listeria monocytogenes to heat and its impact on food safety. Food Control, 20(1), 1-10. doi:10.1016/j.foodcont.2008.01.006 | es_ES |
dc.description.references | Ross, T. (2000). Predictive modelling of the growth and survival of Listeria in fishery products. International Journal of Food Microbiology, 62(3), 231-245. doi:10.1016/s0168-1605(00)00340-8 | es_ES |
dc.description.references | De Cesare, A., Valero, A., Lucchi, A., Pasquali, F., & Manfreda, G. (2013). Modeling growth kinetics of Listeria monocytogenes in pork cuts from packaging to fork under different storage practices. Food Control, 34(1), 198-207. doi:10.1016/j.foodcont.2013.04.027 | es_ES |
dc.description.references | McMeekin, T. A., Olley, J., Ratkowsky, D. A., & Ross, T. (2002). Predictive microbiology: towards the interface and beyond. International Journal of Food Microbiology, 73(2-3), 395-407. doi:10.1016/s0168-1605(01)00663-8 | es_ES |
dc.description.references | McMeekin, T. A. (1997). Quantitative Microbiology: A Basis for Food Safety. Emerging Infectious Diseases, 3(4), 541-549. doi:10.3201/eid0304.970419 | es_ES |
dc.description.references | Ross, T., Ratkowsky, D. A., Mellefont, L. A., & McMeekin, T. A. (2003). Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. International Journal of Food Microbiology, 82(1), 33-43. doi:10.1016/s0168-1605(02)00252-0 | es_ES |
dc.description.references | Van Boekel, M. A. J. S. (2008). Kinetic Modeling of Food Quality: A Critical Review. Comprehensive Reviews in Food Science and Food Safety, 7(1), 144-158. doi:10.1111/j.1541-4337.2007.00036.x | es_ES |