Mostrar el registro sencillo del ítem
dc.contributor.author | Nuin Pla, Neus Edurne | es_ES |
dc.contributor.author | Pérez-Sala, Dolores | es_ES |
dc.contributor.author | Lhiaubet-Vallet, Virginie Lyria | es_ES |
dc.contributor.author | Andreu Ros, María Inmaculada | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.date.accessioned | 2020-04-17T12:50:24Z | |
dc.date.available | 2020-04-17T12:50:24Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140913 | |
dc.description.abstract | [EN] Triflusal is a platelet aggregation inhibitor chemically related to acetylsalicylic acid, which is used for the prevention and/or treatment of vascular thromboembolisms, which acts as a prodrug. Actually, after oral administration it is absorbed primarily in the small intestine, binds to plasma proteins (99%) and is rapidly biotransformed in the liver into its deacetylated active metabolite 2-hydroxy-4-trifluoromethylbenzoic acid (HTB). In healthy humans, the half-life of triflusal is ca. 0.5 h, whereas for HTB it is ca. 35 h. From a pharmacological point of view, it is interesting to note that HTB is itself highly active as a platelet anti-aggregant agent. Indeed, studies on the clinical profile of both drug and metabolite have shown no significant differences between them. It has been evidenced that HTB displays ability to induce photoallergy in humans. This phenomenon involves a cell-mediated immune response, which is initiated by covalent binding of a light-activated photosensitizer (or a species derived therefrom) to a protein. In this context, small proteins like ubiquitin could be appropriate models for investigating covalent binding by means of MS/MS and peptide fingerprint analysis. In previous work, it was shown that HTB forms covalent photoadducts with isolated lysine. Interestingly, ubiquitin contains seven lysine residues that could be modified by a similar reaction. With this background, the aim of the present work is to explore adduct formation between the triflusal metabolite and ubiquitin as model protein upon sunlight irradiation, combining proteomic and photophysical (fluorescence and laser flash photolysis) techniques. Photophysical and proteomic analysis demonstrates monoadduct formation as the major outcome of the reaction. Interestingly, addition can take place at any of the E-amino groups of the lysine residues of the protein and involves replacement of the trifluoromethyl moiety with a new amide function. This process can in principle occur with other trifluoroaromatic compounds and may be responsible for the appearance of undesired photoallergic side effects. | es_ES |
dc.description.sponsorship | Financial support from the Generalitat Valenciana (Prometeo Program), the Spanish Government (MINECO CTQ2015-70164-P to VL-V and SAF2012-36519 to DP-S) and the Carlos III Institute of Health (Grant RIRAAF, RETICS program, RD12/0013/0009 to MM and RD12/0013/0008 to DP-S, and Miguel Servet Contract CP11/00154 for IA) is gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Pharmacology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Ovalent binding to protein | es_ES |
dc.subject | Fluorescence | es_ES |
dc.subject | Laser flash photolysis | es_ES |
dc.subject | Lysine | es_ES |
dc.subject | Mass spectrometry | es_ES |
dc.subject | Metabolite | es_ES |
dc.subject | Photoallergy | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fphar.2016.00277 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-70164-P/ES/LESIONES DEL ADN COMO FOTOSENSIBILIZADORES INTRINSECOS - CONCEPTO DE CABALLO DE TROYA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CP11%2F00154/ES/CP11%2F00154/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SAF2012-36519/ES/MODIFICACION DE PROTEINAS POR LIPIDOS ELECTROFILOS: INTERACCIONES CON VIAS DE SEÑALIZACION Y CON MECANISMOS DE ACCION DE FARMACOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RD12%2F0013%2F0009/ES/Reacciones adversas a alérgenos y fármacos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RD12%2F0013%2F0008/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Nuin Pla, NE.; Pérez-Sala, D.; Lhiaubet-Vallet, VL.; Andreu Ros, MI.; Miranda Alonso, MÁ. (2016). Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques. Frontiers in Pharmacology. 7(277). https://doi.org/10.3389/fphar.2016.00277 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fphar.2016.00277 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 277 | es_ES |
dc.identifier.eissn | 1663-9812 | es_ES |
dc.relation.pasarela | S\328400 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Ariza, A., Montañez, M. I., & Pérez-Sala, D. (2011). Proteomics in immunological reactions to drugs. Current Opinion in Allergy and Clinical Immunology, 11(4), 305-312. doi:10.1097/aci.0b013e3283489ae5 | es_ES |
dc.description.references | Boscá, F., Cuquerella, M. C., Marín, M. L., & Miranda, M. A. (2001). Photochemistry of 2-Hydroxy-4-trifluoromethylbenzoic Acid, Major Metabolite of the Photosensitizing Platelet Antiaggregant Drug Triflusal¶. Photochemistry and Photobiology, 73(5), 463-468. doi:10.1562/0031-8655(2001)0730463pohtam2.0.co2 | es_ES |
dc.description.references | Caffieri, S., Miolo, G., Seraglia, R., Dalzoppo, D., Toma, F. M., & Henegouwen, G. M. J. B. van. (2007). Photoaddition of Fluphenazine to Nucleophiles in Peptides and Proteins. Possible Cause of Immune Side Effects. Chemical Research in Toxicology, 20(10), 1470-1476. doi:10.1021/tx700123u | es_ES |
dc.description.references | Cho, H.-Y., Jeong, T.-J., & Lee, Y.-B. (2003). Simultaneous determination of triflusal and its major active metabolite, 2-hydroxy-4-trifluoromethyl benzoic acid, in rat and human plasma by high-performance liquid chromatography. Journal of Chromatography B, 798(2), 257-264. doi:10.1016/j.jchromb.2003.09.049 | es_ES |
dc.description.references | Dikic, I., Wakatsuki, S., & Walters, K. J. (2009). Ubiquitin-binding domains — from structures to functions. Nature Reviews Molecular Cell Biology, 10(10), 659-671. doi:10.1038/nrm2767 | es_ES |
dc.description.references | Gonzalez-Correa, J. A., & De La Cruz, J. P. (2006). Triflusal: An Antiplatelet Drug with a Neuroprotective Effect? Cardiovascular Drug Reviews, 24(1), 11-24. doi:10.1111/j.1527-3466.2006.00011.x | es_ES |
dc.description.references | Herrmann, J., Lerman, L. O., & Lerman, A. (2007). Ubiquitin and Ubiquitin-Like Proteins in Protein Regulation. Circulation Research, 100(9), 1276-1291. doi:10.1161/01.res.0000264500.11888.f0 | es_ES |
dc.description.references | Hicke, L., Schubert, H. L., & Hill, C. P. (2005). Ubiquitin-binding domains. Nature Reviews Molecular Cell Biology, 6(8), 610-621. doi:10.1038/nrm1701 | es_ES |
dc.description.references | Hochstrasser, M. (2009). Origin and function of ubiquitin-like proteins. Nature, 458(7237), 422-429. doi:10.1038/nature07958 | es_ES |
dc.description.references | Hong, J. H., Ng, D., Srikumar, T., & Raught, B. (2015). The use of ubiquitin lysine mutants to characterize E2-E3 linkage specificity: Mass spectrometry offers a cautionary «tail». PROTEOMICS, 15(17), 2910-2915. doi:10.1002/pmic.201500058 | es_ES |
dc.description.references | Hurley, J. H., Lee, S., & Prag, G. (2006). Ubiquitin-binding domains. Biochemical Journal, 399(3), 361-372. doi:10.1042/bj20061138 | es_ES |
dc.description.references | Lee, A.-Y., Joo, H.-J., Chey, W.-Y., & Kim, Y.-G. (2001). Photopatch Testing in Seven Cases of Photosensitive Drug Eruptions. Annals of Pharmacotherapy, 35(12), 1584-1587. doi:10.1345/aph.1a007 | es_ES |
dc.description.references | Lee, A.-Y., Yoo, S.-H., & Lee, K.-H. (1999). A case of photoallergic drug eruption caused by triflusal (Disgren®). Photodermatology, Photoimmunology & Photomedicine, 15(2), 85-86. doi:10.1111/j.1600-0781.1999.tb00062.x | es_ES |
dc.description.references | Matías-Guiu, J., Ferro, J. M., Alvarez-Sabín, J., Torres, F., Jiménez, M. D., Lago, A., & Melo, T. (2003). Comparison of Triflusal and Aspirin for Prevention of Vascular Events in Patients After Cerebral Infarction. Stroke, 34(4), 840-848. doi:10.1161/01.str.0000063141.24491.50 | es_ES |
dc.description.references | McIntyre, J., & Woodgate, R. (2015). Regulation of translesion DNA synthesis: Posttranslational modification of lysine residues in key proteins. DNA Repair, 29, 166-179. doi:10.1016/j.dnarep.2015.02.011 | es_ES |
dc.description.references | McNeely, W., & Goa, K. L. (1998). Triflusal. Drugs, 55(6), 823-833. doi:10.2165/00003495-199855060-00011 | es_ES |
dc.description.references | Montanaro, S., Lhiaubet-Vallet, V., Jiménez, M. C., Blanca, M., & Miranda, M. A. (2009). Photonucleophilic Addition of the ε-Amino Group of Lysine to a Triflusal Metabolite as a Mechanistic Key to Photoallergy Mediated by the Parent Drug. ChemMedChem, 4(7), 1196-1202. doi:10.1002/cmdc.200900066 | es_ES |
dc.description.references | Nagore, E., Pérez-Ferriols, A., Sánchez-Motilla, J., Serrano, G., & Aliaga, A. (2000). Photosensitivity associated with treatment with triflusal. Journal of the European Academy of Dermatology and Venereology, 14(3), 219-221. doi:10.1046/j.1468-3083.2000.00074.x | es_ES |
dc.description.references | Oeste, C. L., Díez-Dacal, B., Bray, F., García de Lacoba, M., de la Torre, B. G., Andreu, D., … Pérez-Sala, D. (2011). The C-Terminus of H-Ras as a Target for the Covalent Binding of Reactive Compounds Modulating Ras-Dependent Pathways. PLoS ONE, 6(1), e15866. doi:10.1371/journal.pone.0015866 | es_ES |
dc.description.references | Pickart, C. M., & Eddins, M. J. (2004). Ubiquitin: structures, functions, mechanisms. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1695(1-3), 55-72. doi:10.1016/j.bbamcr.2004.09.019 | es_ES |
dc.description.references | Ramirez, J., Martinez, A., Lectez, B., Lee, S. Y., Franco, M., Barrio, R., … Mayor, U. (2015). Proteomic Analysis of the Ubiquitin Landscape in the Drosophila Embryonic Nervous System and the Adult Photoreceptor Cells. PLOS ONE, 10(10), e0139083. doi:10.1371/journal.pone.0139083 | es_ES |
dc.description.references | Ramis, J., Mis, R., Forn, J., Torrent, J., Gorina, E., & Jané, F. (1991). Pharmacokinetics of triflusal and its main metabolite HTB in healthy subjects following a single oral dose. European Journal of Drug Metabolism and Pharmacokinetics, 16(4), 269-273. doi:10.1007/bf03189971 | es_ES |
dc.description.references | Renedo, M., Gayarre, J., García-Domínguez, C. A., Pérez-Rodríguez, A., Prieto, A., Cañada, F. J., … Pérez-Sala, D. (2007). Modification and Activation of Ras Proteins by Electrophilic Prostanoids with Different Structure are Site-Selective†. Biochemistry, 46(22), 6607-6616. doi:10.1021/bi602389p | es_ES |
dc.description.references | Suryadinata, R., Roesley, S., Yang, G., & Šarčević, B. (2014). Mechanisms of Generating Polyubiquitin Chains of Different Topology. Cells, 3(3), 674-689. doi:10.3390/cells3030674 | es_ES |