- -

Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nuin Pla, Neus Edurne es_ES
dc.contributor.author Pérez-Sala, Dolores es_ES
dc.contributor.author Lhiaubet-Vallet, Virginie Lyria es_ES
dc.contributor.author Andreu Ros, María Inmaculada es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.date.accessioned 2020-04-17T12:50:24Z
dc.date.available 2020-04-17T12:50:24Z
dc.date.issued 2016 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140913
dc.description.abstract [EN] Triflusal is a platelet aggregation inhibitor chemically related to acetylsalicylic acid, which is used for the prevention and/or treatment of vascular thromboembolisms, which acts as a prodrug. Actually, after oral administration it is absorbed primarily in the small intestine, binds to plasma proteins (99%) and is rapidly biotransformed in the liver into its deacetylated active metabolite 2-hydroxy-4-trifluoromethylbenzoic acid (HTB). In healthy humans, the half-life of triflusal is ca. 0.5 h, whereas for HTB it is ca. 35 h. From a pharmacological point of view, it is interesting to note that HTB is itself highly active as a platelet anti-aggregant agent. Indeed, studies on the clinical profile of both drug and metabolite have shown no significant differences between them. It has been evidenced that HTB displays ability to induce photoallergy in humans. This phenomenon involves a cell-mediated immune response, which is initiated by covalent binding of a light-activated photosensitizer (or a species derived therefrom) to a protein. In this context, small proteins like ubiquitin could be appropriate models for investigating covalent binding by means of MS/MS and peptide fingerprint analysis. In previous work, it was shown that HTB forms covalent photoadducts with isolated lysine. Interestingly, ubiquitin contains seven lysine residues that could be modified by a similar reaction. With this background, the aim of the present work is to explore adduct formation between the triflusal metabolite and ubiquitin as model protein upon sunlight irradiation, combining proteomic and photophysical (fluorescence and laser flash photolysis) techniques. Photophysical and proteomic analysis demonstrates monoadduct formation as the major outcome of the reaction. Interestingly, addition can take place at any of the E-amino groups of the lysine residues of the protein and involves replacement of the trifluoromethyl moiety with a new amide function. This process can in principle occur with other trifluoroaromatic compounds and may be responsible for the appearance of undesired photoallergic side effects. es_ES
dc.description.sponsorship Financial support from the Generalitat Valenciana (Prometeo Program), the Spanish Government (MINECO CTQ2015-70164-P to VL-V and SAF2012-36519 to DP-S) and the Carlos III Institute of Health (Grant RIRAAF, RETICS program, RD12/0013/0009 to MM and RD12/0013/0008 to DP-S, and Miguel Servet Contract CP11/00154 for IA) is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Pharmacology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Ovalent binding to protein es_ES
dc.subject Fluorescence es_ES
dc.subject Laser flash photolysis es_ES
dc.subject Lysine es_ES
dc.subject Mass spectrometry es_ES
dc.subject Metabolite es_ES
dc.subject Photoallergy es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphar.2016.00277 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-70164-P/ES/LESIONES DEL ADN COMO FOTOSENSIBILIZADORES INTRINSECOS - CONCEPTO DE CABALLO DE TROYA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CP11%2F00154/ES/CP11%2F00154/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SAF2012-36519/ES/MODIFICACION DE PROTEINAS POR LIPIDOS ELECTROFILOS: INTERACCIONES CON VIAS DE SEÑALIZACION Y CON MECANISMOS DE ACCION DE FARMACOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD12%2F0013%2F0009/ES/Reacciones adversas a alérgenos y fármacos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD12%2F0013%2F0008/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Nuin Pla, NE.; Pérez-Sala, D.; Lhiaubet-Vallet, VL.; Andreu Ros, MI.; Miranda Alonso, MÁ. (2016). Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques. Frontiers in Pharmacology. 7(277). https://doi.org/10.3389/fphar.2016.00277 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphar.2016.00277 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 277 es_ES
dc.identifier.eissn 1663-9812 es_ES
dc.relation.pasarela S\328400 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Ariza, A., Montañez, M. I., & Pérez-Sala, D. (2011). Proteomics in immunological reactions to drugs. Current Opinion in Allergy and Clinical Immunology, 11(4), 305-312. doi:10.1097/aci.0b013e3283489ae5 es_ES
dc.description.references Boscá, F., Cuquerella, M. C., Marín, M. L., & Miranda, M. A. (2001). Photochemistry of 2-Hydroxy-4-trifluoromethylbenzoic Acid, Major Metabolite of the Photosensitizing Platelet Antiaggregant Drug Triflusal¶. Photochemistry and Photobiology, 73(5), 463-468. doi:10.1562/0031-8655(2001)0730463pohtam2.0.co2 es_ES
dc.description.references Caffieri, S., Miolo, G., Seraglia, R., Dalzoppo, D., Toma, F. M., & Henegouwen, G. M. J. B. van. (2007). Photoaddition of Fluphenazine to Nucleophiles in Peptides and Proteins. Possible Cause of Immune Side Effects. Chemical Research in Toxicology, 20(10), 1470-1476. doi:10.1021/tx700123u es_ES
dc.description.references Cho, H.-Y., Jeong, T.-J., & Lee, Y.-B. (2003). Simultaneous determination of triflusal and its major active metabolite, 2-hydroxy-4-trifluoromethyl benzoic acid, in rat and human plasma by high-performance liquid chromatography. Journal of Chromatography B, 798(2), 257-264. doi:10.1016/j.jchromb.2003.09.049 es_ES
dc.description.references Dikic, I., Wakatsuki, S., & Walters, K. J. (2009). Ubiquitin-binding domains — from structures to functions. Nature Reviews Molecular Cell Biology, 10(10), 659-671. doi:10.1038/nrm2767 es_ES
dc.description.references Gonzalez-Correa, J. A., & De La Cruz, J. P. (2006). Triflusal: An Antiplatelet Drug with a Neuroprotective Effect? Cardiovascular Drug Reviews, 24(1), 11-24. doi:10.1111/j.1527-3466.2006.00011.x es_ES
dc.description.references Herrmann, J., Lerman, L. O., & Lerman, A. (2007). Ubiquitin and Ubiquitin-Like Proteins in Protein Regulation. Circulation Research, 100(9), 1276-1291. doi:10.1161/01.res.0000264500.11888.f0 es_ES
dc.description.references Hicke, L., Schubert, H. L., & Hill, C. P. (2005). Ubiquitin-binding domains. Nature Reviews Molecular Cell Biology, 6(8), 610-621. doi:10.1038/nrm1701 es_ES
dc.description.references Hochstrasser, M. (2009). Origin and function of ubiquitin-like proteins. Nature, 458(7237), 422-429. doi:10.1038/nature07958 es_ES
dc.description.references Hong, J. H., Ng, D., Srikumar, T., & Raught, B. (2015). The use of ubiquitin lysine mutants to characterize E2-E3 linkage specificity: Mass spectrometry offers a cautionary «tail». PROTEOMICS, 15(17), 2910-2915. doi:10.1002/pmic.201500058 es_ES
dc.description.references Hurley, J. H., Lee, S., & Prag, G. (2006). Ubiquitin-binding domains. Biochemical Journal, 399(3), 361-372. doi:10.1042/bj20061138 es_ES
dc.description.references Lee, A.-Y., Joo, H.-J., Chey, W.-Y., & Kim, Y.-G. (2001). Photopatch Testing in Seven Cases of Photosensitive Drug Eruptions. Annals of Pharmacotherapy, 35(12), 1584-1587. doi:10.1345/aph.1a007 es_ES
dc.description.references Lee, A.-Y., Yoo, S.-H., & Lee, K.-H. (1999). A case of photoallergic drug eruption caused by triflusal (Disgren®). Photodermatology, Photoimmunology & Photomedicine, 15(2), 85-86. doi:10.1111/j.1600-0781.1999.tb00062.x es_ES
dc.description.references Matías-Guiu, J., Ferro, J. M., Alvarez-Sabín, J., Torres, F., Jiménez, M. D., Lago, A., & Melo, T. (2003). Comparison of Triflusal and Aspirin for Prevention of Vascular Events in Patients After Cerebral Infarction. Stroke, 34(4), 840-848. doi:10.1161/01.str.0000063141.24491.50 es_ES
dc.description.references McIntyre, J., & Woodgate, R. (2015). Regulation of translesion DNA synthesis: Posttranslational modification of lysine residues in key proteins. DNA Repair, 29, 166-179. doi:10.1016/j.dnarep.2015.02.011 es_ES
dc.description.references McNeely, W., & Goa, K. L. (1998). Triflusal. Drugs, 55(6), 823-833. doi:10.2165/00003495-199855060-00011 es_ES
dc.description.references Montanaro, S., Lhiaubet-Vallet, V., Jiménez, M. C., Blanca, M., & Miranda, M. A. (2009). Photonucleophilic Addition of the ε-Amino Group of Lysine to a Triflusal Metabolite as a Mechanistic Key to Photoallergy Mediated by the Parent Drug. ChemMedChem, 4(7), 1196-1202. doi:10.1002/cmdc.200900066 es_ES
dc.description.references Nagore, E., Pérez-Ferriols, A., Sánchez-Motilla, J., Serrano, G., & Aliaga, A. (2000). Photosensitivity associated with treatment with triflusal. Journal of the European Academy of Dermatology and Venereology, 14(3), 219-221. doi:10.1046/j.1468-3083.2000.00074.x es_ES
dc.description.references Oeste, C. L., Díez-Dacal, B., Bray, F., García de Lacoba, M., de la Torre, B. G., Andreu, D., … Pérez-Sala, D. (2011). The C-Terminus of H-Ras as a Target for the Covalent Binding of Reactive Compounds Modulating Ras-Dependent Pathways. PLoS ONE, 6(1), e15866. doi:10.1371/journal.pone.0015866 es_ES
dc.description.references Pickart, C. M., & Eddins, M. J. (2004). Ubiquitin: structures, functions, mechanisms. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1695(1-3), 55-72. doi:10.1016/j.bbamcr.2004.09.019 es_ES
dc.description.references Ramirez, J., Martinez, A., Lectez, B., Lee, S. Y., Franco, M., Barrio, R., … Mayor, U. (2015). Proteomic Analysis of the Ubiquitin Landscape in the Drosophila Embryonic Nervous System and the Adult Photoreceptor Cells. PLOS ONE, 10(10), e0139083. doi:10.1371/journal.pone.0139083 es_ES
dc.description.references Ramis, J., Mis, R., Forn, J., Torrent, J., Gorina, E., & Jané, F. (1991). Pharmacokinetics of triflusal and its main metabolite HTB in healthy subjects following a single oral dose. European Journal of Drug Metabolism and Pharmacokinetics, 16(4), 269-273. doi:10.1007/bf03189971 es_ES
dc.description.references Renedo, M., Gayarre, J., García-Domínguez, C. A., Pérez-Rodríguez, A., Prieto, A., Cañada, F. J., … Pérez-Sala, D. (2007). Modification and Activation of Ras Proteins by Electrophilic Prostanoids with Different Structure are Site-Selective†. Biochemistry, 46(22), 6607-6616. doi:10.1021/bi602389p es_ES
dc.description.references Suryadinata, R., Roesley, S., Yang, G., & Šarčević, B. (2014). Mechanisms of Generating Polyubiquitin Chains of Different Topology. Cells, 3(3), 674-689. doi:10.3390/cells3030674 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem