- -

Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates

Show full item record

Sobreiro-Almeida, R.; Tamaño-Machiavello, MN.; Carvalho, E.; Cordon, L.; Doria, S.; Senent, L.; Correia, DM.... (2017). Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates. International Journal of Molecular Sciences. 18(11):1-17. https://doi.org/10.3390/ijms18112391

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140923

Files in this item

Item Metadata

Title: Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates
Author: Sobreiro-Almeida, Rita Tamaño-Machiavello, María Noel Carvalho, E.O. Cordon, Lourdes Doria, S. Senent, Leonor Correia, D. M. Ribeiro, C. Lanceros-Méndez, S. Sabater i Serra, Roser Gómez Ribelles, José Luís Sempere-Talens, Amparo
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Issued date:
Abstract:
[EN] The aim of this work was to determine the influence of the biomaterial environment on human mesenchymal stem cell (hMSC) fate when cultured in supports with varying topography. Poly(vinylidene fluoride) (PVDF) culture ...[+]
Subjects: Tissue engineering , Bone differentiation , Poly(vinylidene fluoride) , Microspheres
Copyrigths: Reconocimiento (by)
Source:
International Journal of Molecular Sciences. (eissn: 1422-0067 )
DOI: 10.3390/ijms18112391
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/ijms18112391
Project ID:
info:eu-repo/grantAgreement/MINECO//CB16%2F12%2F00284/ES/CANCER/
...[+]
info:eu-repo/grantAgreement/MINECO//CB16%2F12%2F00284/ES/CANCER/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F5582%2F2001/PT/OS EFEITOS DO PODER E DA DIMENSÃO DOS GRUPOS NA VARIABILIDADE "CROSS-SITUATIONAL"/
info:eu-repo/grantAgreement/FCT//SFRH%2FBPD%2F121526%2F2016/
info:eu-repo/grantAgreement/FCT/5876/147414/PT/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F063/ES/MEDULA OSEA ARTIFICIAL PARA PERSONALIZAR EL TRATAMIENTO DE PACIENTES DE CANCERES DE SANGRE/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F90870%2F2012/PT/TAILORING ELECTRO-MECHANICALLY ACTIVE MATERIALS FOR TISSUE ENGINEERING APPLICATIONS/
info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/
info:eu-repo/grantAgreement/FCT/3599-PPCDT/121526/PT/Heterometallic Metal-organic Frameworks: Smart Materials for Advanced Applications/
[-]
Thanks:
The authors thank the Portuguese Foundation for Science and Technology (FCT) for financial support under project PTDC/EEI-SII/5582/2014, Strategic Funding UID/FIS/04650/2013 and grants SFRH/BPD/90870/2012 (C.R.) and ...[+]
Type: Artículo

References

Godara, P., Nordon, R. E., & McFarland, C. D. (2008). Mesenchymal stem cells in tissue engineering. Journal of Chemical Technology & Biotechnology, 83(4), 397-407. doi:10.1002/jctb.1901

Nombela-Arrieta, C., Ritz, J., & Silberstein, L. E. (2011). The elusive nature and function of mesenchymal stem cells. Nature Reviews Molecular Cell Biology, 12(2), 126-131. doi:10.1038/nrm3049

Fu, R.-H., Wang, Y.-C., Liu, S.-P., Huang, C.-M., Kang, Y.-H., Tsai, C.-H., … Lin, S.-Z. (2011). Differentiation of Stem Cells: Strategies for Modifying Surface Biomaterials. Cell Transplantation, 20(1), 37-47. doi:10.3727/096368910x532756 [+]
Godara, P., Nordon, R. E., & McFarland, C. D. (2008). Mesenchymal stem cells in tissue engineering. Journal of Chemical Technology & Biotechnology, 83(4), 397-407. doi:10.1002/jctb.1901

Nombela-Arrieta, C., Ritz, J., & Silberstein, L. E. (2011). The elusive nature and function of mesenchymal stem cells. Nature Reviews Molecular Cell Biology, 12(2), 126-131. doi:10.1038/nrm3049

Fu, R.-H., Wang, Y.-C., Liu, S.-P., Huang, C.-M., Kang, Y.-H., Tsai, C.-H., … Lin, S.-Z. (2011). Differentiation of Stem Cells: Strategies for Modifying Surface Biomaterials. Cell Transplantation, 20(1), 37-47. doi:10.3727/096368910x532756

Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 35(2). doi:10.1042/bsr20150025

Leferink, A. M., Santos, D., Karperien, M., Truckenmüller, R. K., van Blitterswijk, C. A., & Moroni, L. (2015). Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds. Integrative Biology, 7(12), 1574-1586. doi:10.1039/c5ib00177c

Duncan, R. (2003). The dawning era of polymer therapeutics. Nature Reviews Drug Discovery, 2(5), 347-360. doi:10.1038/nrd1088

Phillips, J. E., Petrie, T. A., Creighton, F. P., & García, A. J. (2010). Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries. Acta Biomaterialia, 6(1), 12-20. doi:10.1016/j.actbio.2009.07.023

Alves, N. M., Pashkuleva, I., Reis, R. L., & Mano, J. F. (2010). Controlling Cell Behavior Through the Design of Polymer Surfaces. Small, 6(20), 2208-2220. doi:10.1002/smll.201000233

Chen, Y., Cho, M. R., Mak, A. F. T., Li, J. S., Wang, M., & Sun, S. (2007). Morphology and adhesion of mesenchymal stem cells on PLLA, apatite and apatite/collagen surfaces. Journal of Materials Science: Materials in Medicine, 19(7), 2563-2567. doi:10.1007/s10856-007-3195-2

Hong, S.-J., Yu, H.-S., & Kim, H.-W. (2009). Preparation of porous bioactive ceramic microspheres and in vitro osteoblastic culturing for tissue engineering application. Acta Biomaterialia, 5(5), 1725-1731. doi:10.1016/j.actbio.2008.12.006

Wang, H., Leeuwenburgh, S. C. G., Li, Y., & Jansen, J. A. (2012). The Use of Micro- and Nanospheres as Functional Components for Bone Tissue Regeneration. Tissue Engineering Part B: Reviews, 18(1), 24-39. doi:10.1089/ten.teb.2011.0184

Ribeiro, C., Moreira, S., Correia, V., Sencadas, V., Rocha, J. G., Gama, F. M., … Lanceros-Méndez, S. (2012). Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Advances, 2(30), 11504. doi:10.1039/c2ra21841k

Ribeiro, C., Sencadas, V., Correia, D. M., & Lanceros-Méndez, S. (2015). Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 136, 46-55. doi:10.1016/j.colsurfb.2015.08.043

Ribeiro, C., Correia, V., Martins, P., Gama, F. M., & Lanceros-Mendez, S. (2016). Proving the suitability of magnetoelectric stimuli for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 140, 430-436. doi:10.1016/j.colsurfb.2015.12.055

Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006

Ribeiro, C., Panadero, J. A., Sencadas, V., Lanceros-Méndez, S., Tamaño, M. N., Moratal, D., … Gómez Ribelles, J. L. (2012). Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomedical Materials, 7(3), 035004. doi:10.1088/1748-6041/7/3/035004

Damaraju, S. M., Wu, S., Jaffe, M., & Arinzeh, T. L. (2013). Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomedical Materials, 8(4), 045007. doi:10.1088/1748-6041/8/4/045007

Ribeiro, C., Pärssinen, J., Sencadas, V., Correia, V., Miettinen, S., Hytönen, V. P., & Lanceros-Méndez, S. (2014). Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research Part A, 103(6), 2172-2175. doi:10.1002/jbm.a.35368

Rodrigues, M. T., Gomes, M. E., Mano, J. F., & Reis, R. L. (2008). β-PVDF Membranes Induce Cellular Proliferation and Differentiation in Static and Dynamic Conditions. Materials Science Forum, 587-588, 72-76. doi:10.4028/www.scientific.net/msf.587-588.72

Pärssinen, J., Hammarén, H., Rahikainen, R., Sencadas, V., Ribeiro, C., Vanhatupa, S., … Hytönen, V. P. (2014). Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). Journal of Biomedical Materials Research Part A, 103(3), 919-928. doi:10.1002/jbm.a.35234

Martinez, C., Hofmann, T. J., Marino, R., Dominici, M., & Horwitz, E. M. (2007). Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood, 109(10), 4245-4248. doi:10.1182/blood-2006-08-039347

Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006). Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue. Stem Cells, 24(5), 1294-1301. doi:10.1634/stemcells.2005-0342

Delorme, B., Ringe, J., Gallay, N., Le Vern, Y., Kerboeuf, D., Jorgensen, C., … Charbord, P. (2008). Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood, 111(5), 2631-2635. doi:10.1182/blood-2007-07-099622

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. ., Krause, D. S., … Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. doi:10.1080/14653240600855905

Jin, H. J., Park, S. K., Oh, W., Yang, Y. S., Kim, S. W., & Choi, S. J. (2009). Down-regulation of CD105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 381(4), 676-681. doi:10.1016/j.bbrc.2009.02.118

Correia, D. M., Gonçalves, R., Ribeiro, C., Sencadas, V., Botelho, G., Ribelles, J. L. G., & Lanceros-Méndez, S. (2014). Electrosprayed poly(vinylidene fluoride) microparticles for tissue engineering applications. RSC Adv., 4(62), 33013-33021. doi:10.1039/c4ra04581e

Costa, R., Ribeiro, C., Lopes, A. C., Martins, P., Sencadas, V., Soares, R., & Lanceros-Mendez, S. (2012). Osteoblast, fibroblast and in vivo biological response to poly(vinylidene fluoride) based composite materials. Journal of Materials Science: Materials in Medicine, 24(2), 395-403. doi:10.1007/s10856-012-4808-y

Golub, E. E., & Boesze-Battaglia, K. (2007). The role of alkaline phosphatase in mineralization. Current Opinion in Orthopaedics, 18(5), 444-448. doi:10.1097/bco.0b013e3282630851

El-Amin, S. F., Botchwey, E., Tuli, R., Kofron, M. D., Mesfin, A., Sethuraman, S., … Laurencin, C. T. (2006). Human osteoblast cells: Isolation, characterization, and growth on polymers for musculoskeletal tissue engineering. Journal of Biomedical Materials Research Part A, 76A(3), 439-449. doi:10.1002/jbm.a.30411

Roach, H. (1994). Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biology International, 18(6), 617-628. doi:10.1006/cbir.1994.1088

Cha, K. J., Hong, J. M., Cho, D.-W., & Kim, D. S. (2013). Enhanced osteogenic fate and function of MC3T3-E1 cells on nanoengineered polystyrene surfaces with nanopillar and nanopore arrays. Biofabrication, 5(2), 025007. doi:10.1088/1758-5082/5/2/025007

Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., … Oreffo, R. O. C. (2007). The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 6(12), 997-1003. doi:10.1038/nmat2013

Kilian, K. A., Bugarija, B., Lahn, B. T., & Mrksich, M. (2010). Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences, 107(11), 4872-4877. doi:10.1073/pnas.0903269107

Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126(4), 677-689. doi:10.1016/j.cell.2006.06.044

McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment. Developmental Cell, 6(4), 483-495. doi:10.1016/s1534-5807(04)00075-9

Wiesmann, A., Bühring, H.-J., Mentrup, C., & Wiesmann, H.-P. (2006). Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head & Face Medicine, 2(1). doi:10.1186/1746-160x-2-8

Takedachi, M., Oohara, H., Smith, B. J., Iyama, M., Kobashi, M., Maeda, K., … Murakami, S. (2012). CD73-generated adenosine promotes osteoblast differentiation. Journal of Cellular Physiology, 227(6), 2622-2631. doi:10.1002/jcp.23001

Ode, A., Schoon, J., Kurtz, A., Gaetjen, M., Ode, J., … Duda, G. (2013). CD73/5’-ecto-nucleotidase acts as a regulatory factor in osteo-/chondrogenic differentiation of mechanically stimulated mesenchymal stromal cells. European Cells and Materials, 25, 37-47. doi:10.22203/ecm.v025a03

Williams, A. R., & Hare, J. M. (2011). Mesenchymal Stem Cells. Circulation Research, 109(8), 923-940. doi:10.1161/circresaha.111.243147

Gregory, C. A., Grady Gunn, W., Peister, A., & Prockop, D. J. (2004). An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Analytical Biochemistry, 329(1), 77-84. doi:10.1016/j.ab.2004.02.002

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record