- -

Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sobreiro-Almeida, Rita es_ES
dc.contributor.author Tamaño-Machiavello, María Noel es_ES
dc.contributor.author Carvalho, E.O. es_ES
dc.contributor.author Cordon, Lourdes es_ES
dc.contributor.author Doria, S. es_ES
dc.contributor.author Senent, Leonor es_ES
dc.contributor.author Correia, D. M. es_ES
dc.contributor.author Ribeiro, C. es_ES
dc.contributor.author Lanceros-Méndez, S. es_ES
dc.contributor.author Sabater i Serra, Roser es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Sempere-Talens, Amparo es_ES
dc.date.accessioned 2020-04-17T12:50:38Z
dc.date.available 2020-04-17T12:50:38Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140923
dc.description.abstract [EN] The aim of this work was to determine the influence of the biomaterial environment on human mesenchymal stem cell (hMSC) fate when cultured in supports with varying topography. Poly(vinylidene fluoride) (PVDF) culture supports were prepared with structures ranging between 2D and 3D, based on PVDF films on which PVDF microspheres were deposited with varying surface density. Maintenance of multipotentiality when cultured in expansion medium was studied by flow cytometry monitoring the expression of characteristic hMSCs markers, and revealed that cells were losing their characteristic surface markers on these supports. Cell morphology was assessed by scanning electron microscopy (SEM). Alkaline phosphatase activity was also assessed after seven days of culture on expansion medium. On the other hand, osteoblastic differentiation was monitored while culturing in osteogenic medium after cells reached confluence. Osteocalcin immunocytochemistry and alizarin red assays were performed. We show that flow cytometry is a suitable technique for the study of the differentiation of hMSC seeded onto biomaterials, giving a quantitative reliable analysis of hMSC-associated markers. We also show that electrosprayed piezoelectric poly(vinylidene fluoride) is a suitable support for tissue engineering purposes, as hMSCs can proliferate, be viable and undergo osteogenic differentiation when chemically stimulated. es_ES
dc.description.sponsorship The authors thank the Portuguese Foundation for Science and Technology (FCT) for financial support under project PTDC/EEI-SII/5582/2014, Strategic Funding UID/FIS/04650/2013 and grants SFRH/BPD/90870/2012 (C.R.) and SFRH/BPD/121526/2016 (D.M.C). The authors acknowledge funding by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (AEI/FEDER, UE) and from the Basque Government Industry Department under the ELKARTEK program. JLGR, LC, RSS and AS acknowledge funding by the Conselleria de Educacion, Investigacion, Cultura y Deporte of the Generalitat Valenciana through PROMETEO/2016/063 project. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development. This work was partially financed with FEDER funds (CIBERONC (CB16/12/00284)). The authors acknowledge the assistance and advice of Electron Microscopy Service of the UPV. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Molecular Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Tissue engineering es_ES
dc.subject Bone differentiation es_ES
dc.subject Poly(vinylidene fluoride) es_ES
dc.subject Microspheres es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijms18112391 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CB16%2F12%2F00284/ES/CANCER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F5582%2F2001/PT/OS EFEITOS DO PODER E DA DIMENSÃO DOS GRUPOS NA VARIABILIDADE "CROSS-SITUATIONAL"/
dc.relation.projectID info:eu-repo/grantAgreement/FCT//SFRH%2FBPD%2F121526%2F2016/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876/147414/PT/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F063/ES/MEDULA OSEA ARTIFICIAL PARA PERSONALIZAR EL TRATAMIENTO DE PACIENTES DE CANCERES DE SANGRE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F90870%2F2012/PT/TAILORING ELECTRO-MECHANICALLY ACTIVE MATERIALS FOR TISSUE ENGINEERING APPLICATIONS/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/3599-PPCDT/121526/PT/Heterometallic Metal-organic Frameworks: Smart Materials for Advanced Applications/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Sobreiro-Almeida, R.; Tamaño-Machiavello, MN.; Carvalho, E.; Cordon, L.; Doria, S.; Senent, L.; Correia, DM.... (2017). Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates. International Journal of Molecular Sciences. 18(11):1-17. https://doi.org/10.3390/ijms18112391 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijms18112391 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 1422-0067 es_ES
dc.relation.pasarela S\351094 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Gobierno Vasco/Eusko Jaurlaritza es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Godara, P., Nordon, R. E., & McFarland, C. D. (2008). Mesenchymal stem cells in tissue engineering. Journal of Chemical Technology & Biotechnology, 83(4), 397-407. doi:10.1002/jctb.1901 es_ES
dc.description.references Nombela-Arrieta, C., Ritz, J., & Silberstein, L. E. (2011). The elusive nature and function of mesenchymal stem cells. Nature Reviews Molecular Cell Biology, 12(2), 126-131. doi:10.1038/nrm3049 es_ES
dc.description.references Fu, R.-H., Wang, Y.-C., Liu, S.-P., Huang, C.-M., Kang, Y.-H., Tsai, C.-H., … Lin, S.-Z. (2011). Differentiation of Stem Cells: Strategies for Modifying Surface Biomaterials. Cell Transplantation, 20(1), 37-47. doi:10.3727/096368910x532756 es_ES
dc.description.references Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 35(2). doi:10.1042/bsr20150025 es_ES
dc.description.references Leferink, A. M., Santos, D., Karperien, M., Truckenmüller, R. K., van Blitterswijk, C. A., & Moroni, L. (2015). Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds. Integrative Biology, 7(12), 1574-1586. doi:10.1039/c5ib00177c es_ES
dc.description.references Duncan, R. (2003). The dawning era of polymer therapeutics. Nature Reviews Drug Discovery, 2(5), 347-360. doi:10.1038/nrd1088 es_ES
dc.description.references Phillips, J. E., Petrie, T. A., Creighton, F. P., & García, A. J. (2010). Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries. Acta Biomaterialia, 6(1), 12-20. doi:10.1016/j.actbio.2009.07.023 es_ES
dc.description.references Alves, N. M., Pashkuleva, I., Reis, R. L., & Mano, J. F. (2010). Controlling Cell Behavior Through the Design of Polymer Surfaces. Small, 6(20), 2208-2220. doi:10.1002/smll.201000233 es_ES
dc.description.references Chen, Y., Cho, M. R., Mak, A. F. T., Li, J. S., Wang, M., & Sun, S. (2007). Morphology and adhesion of mesenchymal stem cells on PLLA, apatite and apatite/collagen surfaces. Journal of Materials Science: Materials in Medicine, 19(7), 2563-2567. doi:10.1007/s10856-007-3195-2 es_ES
dc.description.references Hong, S.-J., Yu, H.-S., & Kim, H.-W. (2009). Preparation of porous bioactive ceramic microspheres and in vitro osteoblastic culturing for tissue engineering application. Acta Biomaterialia, 5(5), 1725-1731. doi:10.1016/j.actbio.2008.12.006 es_ES
dc.description.references Wang, H., Leeuwenburgh, S. C. G., Li, Y., & Jansen, J. A. (2012). The Use of Micro- and Nanospheres as Functional Components for Bone Tissue Regeneration. Tissue Engineering Part B: Reviews, 18(1), 24-39. doi:10.1089/ten.teb.2011.0184 es_ES
dc.description.references Ribeiro, C., Moreira, S., Correia, V., Sencadas, V., Rocha, J. G., Gama, F. M., … Lanceros-Méndez, S. (2012). Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Advances, 2(30), 11504. doi:10.1039/c2ra21841k es_ES
dc.description.references Ribeiro, C., Sencadas, V., Correia, D. M., & Lanceros-Méndez, S. (2015). Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 136, 46-55. doi:10.1016/j.colsurfb.2015.08.043 es_ES
dc.description.references Ribeiro, C., Correia, V., Martins, P., Gama, F. M., & Lanceros-Mendez, S. (2016). Proving the suitability of magnetoelectric stimuli for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 140, 430-436. doi:10.1016/j.colsurfb.2015.12.055 es_ES
dc.description.references Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006 es_ES
dc.description.references Ribeiro, C., Panadero, J. A., Sencadas, V., Lanceros-Méndez, S., Tamaño, M. N., Moratal, D., … Gómez Ribelles, J. L. (2012). Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomedical Materials, 7(3), 035004. doi:10.1088/1748-6041/7/3/035004 es_ES
dc.description.references Damaraju, S. M., Wu, S., Jaffe, M., & Arinzeh, T. L. (2013). Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomedical Materials, 8(4), 045007. doi:10.1088/1748-6041/8/4/045007 es_ES
dc.description.references Ribeiro, C., Pärssinen, J., Sencadas, V., Correia, V., Miettinen, S., Hytönen, V. P., & Lanceros-Méndez, S. (2014). Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research Part A, 103(6), 2172-2175. doi:10.1002/jbm.a.35368 es_ES
dc.description.references Rodrigues, M. T., Gomes, M. E., Mano, J. F., & Reis, R. L. (2008). β-PVDF Membranes Induce Cellular Proliferation and Differentiation in Static and Dynamic Conditions. Materials Science Forum, 587-588, 72-76. doi:10.4028/www.scientific.net/msf.587-588.72 es_ES
dc.description.references Pärssinen, J., Hammarén, H., Rahikainen, R., Sencadas, V., Ribeiro, C., Vanhatupa, S., … Hytönen, V. P. (2014). Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). Journal of Biomedical Materials Research Part A, 103(3), 919-928. doi:10.1002/jbm.a.35234 es_ES
dc.description.references Martinez, C., Hofmann, T. J., Marino, R., Dominici, M., & Horwitz, E. M. (2007). Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood, 109(10), 4245-4248. doi:10.1182/blood-2006-08-039347 es_ES
dc.description.references Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006). Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue. Stem Cells, 24(5), 1294-1301. doi:10.1634/stemcells.2005-0342 es_ES
dc.description.references Delorme, B., Ringe, J., Gallay, N., Le Vern, Y., Kerboeuf, D., Jorgensen, C., … Charbord, P. (2008). Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood, 111(5), 2631-2635. doi:10.1182/blood-2007-07-099622 es_ES
dc.description.references Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. ., Krause, D. S., … Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. doi:10.1080/14653240600855905 es_ES
dc.description.references Jin, H. J., Park, S. K., Oh, W., Yang, Y. S., Kim, S. W., & Choi, S. J. (2009). Down-regulation of CD105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 381(4), 676-681. doi:10.1016/j.bbrc.2009.02.118 es_ES
dc.description.references Correia, D. M., Gonçalves, R., Ribeiro, C., Sencadas, V., Botelho, G., Ribelles, J. L. G., & Lanceros-Méndez, S. (2014). Electrosprayed poly(vinylidene fluoride) microparticles for tissue engineering applications. RSC Adv., 4(62), 33013-33021. doi:10.1039/c4ra04581e es_ES
dc.description.references Costa, R., Ribeiro, C., Lopes, A. C., Martins, P., Sencadas, V., Soares, R., & Lanceros-Mendez, S. (2012). Osteoblast, fibroblast and in vivo biological response to poly(vinylidene fluoride) based composite materials. Journal of Materials Science: Materials in Medicine, 24(2), 395-403. doi:10.1007/s10856-012-4808-y es_ES
dc.description.references Golub, E. E., & Boesze-Battaglia, K. (2007). The role of alkaline phosphatase in mineralization. Current Opinion in Orthopaedics, 18(5), 444-448. doi:10.1097/bco.0b013e3282630851 es_ES
dc.description.references El-Amin, S. F., Botchwey, E., Tuli, R., Kofron, M. D., Mesfin, A., Sethuraman, S., … Laurencin, C. T. (2006). Human osteoblast cells: Isolation, characterization, and growth on polymers for musculoskeletal tissue engineering. Journal of Biomedical Materials Research Part A, 76A(3), 439-449. doi:10.1002/jbm.a.30411 es_ES
dc.description.references Roach, H. (1994). Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biology International, 18(6), 617-628. doi:10.1006/cbir.1994.1088 es_ES
dc.description.references Cha, K. J., Hong, J. M., Cho, D.-W., & Kim, D. S. (2013). Enhanced osteogenic fate and function of MC3T3-E1 cells on nanoengineered polystyrene surfaces with nanopillar and nanopore arrays. Biofabrication, 5(2), 025007. doi:10.1088/1758-5082/5/2/025007 es_ES
dc.description.references Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., … Oreffo, R. O. C. (2007). The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 6(12), 997-1003. doi:10.1038/nmat2013 es_ES
dc.description.references Kilian, K. A., Bugarija, B., Lahn, B. T., & Mrksich, M. (2010). Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences, 107(11), 4872-4877. doi:10.1073/pnas.0903269107 es_ES
dc.description.references Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126(4), 677-689. doi:10.1016/j.cell.2006.06.044 es_ES
dc.description.references McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment. Developmental Cell, 6(4), 483-495. doi:10.1016/s1534-5807(04)00075-9 es_ES
dc.description.references Wiesmann, A., Bühring, H.-J., Mentrup, C., & Wiesmann, H.-P. (2006). Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head & Face Medicine, 2(1). doi:10.1186/1746-160x-2-8 es_ES
dc.description.references Takedachi, M., Oohara, H., Smith, B. J., Iyama, M., Kobashi, M., Maeda, K., … Murakami, S. (2012). CD73-generated adenosine promotes osteoblast differentiation. Journal of Cellular Physiology, 227(6), 2622-2631. doi:10.1002/jcp.23001 es_ES
dc.description.references Ode, A., Schoon, J., Kurtz, A., Gaetjen, M., Ode, J., … Duda, G. (2013). CD73/5’-ecto-nucleotidase acts as a regulatory factor in osteo-/chondrogenic differentiation of mechanically stimulated mesenchymal stromal cells. European Cells and Materials, 25, 37-47. doi:10.22203/ecm.v025a03 es_ES
dc.description.references Williams, A. R., & Hare, J. M. (2011). Mesenchymal Stem Cells. Circulation Research, 109(8), 923-940. doi:10.1161/circresaha.111.243147 es_ES
dc.description.references Gregory, C. A., Grady Gunn, W., Peister, A., & Prockop, D. J. (2004). An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Analytical Biochemistry, 329(1), 77-84. doi:10.1016/j.ab.2004.02.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem