Mostrar el registro sencillo del ítem
dc.contributor.author | Sobreiro-Almeida, Rita | es_ES |
dc.contributor.author | Tamaño-Machiavello, María Noel | es_ES |
dc.contributor.author | Carvalho, E.O. | es_ES |
dc.contributor.author | Cordon, Lourdes | es_ES |
dc.contributor.author | Doria, S. | es_ES |
dc.contributor.author | Senent, Leonor | es_ES |
dc.contributor.author | Correia, D. M. | es_ES |
dc.contributor.author | Ribeiro, C. | es_ES |
dc.contributor.author | Lanceros-Méndez, S. | es_ES |
dc.contributor.author | Sabater i Serra, Roser | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Sempere-Talens, Amparo | es_ES |
dc.date.accessioned | 2020-04-17T12:50:38Z | |
dc.date.available | 2020-04-17T12:50:38Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140923 | |
dc.description.abstract | [EN] The aim of this work was to determine the influence of the biomaterial environment on human mesenchymal stem cell (hMSC) fate when cultured in supports with varying topography. Poly(vinylidene fluoride) (PVDF) culture supports were prepared with structures ranging between 2D and 3D, based on PVDF films on which PVDF microspheres were deposited with varying surface density. Maintenance of multipotentiality when cultured in expansion medium was studied by flow cytometry monitoring the expression of characteristic hMSCs markers, and revealed that cells were losing their characteristic surface markers on these supports. Cell morphology was assessed by scanning electron microscopy (SEM). Alkaline phosphatase activity was also assessed after seven days of culture on expansion medium. On the other hand, osteoblastic differentiation was monitored while culturing in osteogenic medium after cells reached confluence. Osteocalcin immunocytochemistry and alizarin red assays were performed. We show that flow cytometry is a suitable technique for the study of the differentiation of hMSC seeded onto biomaterials, giving a quantitative reliable analysis of hMSC-associated markers. We also show that electrosprayed piezoelectric poly(vinylidene fluoride) is a suitable support for tissue engineering purposes, as hMSCs can proliferate, be viable and undergo osteogenic differentiation when chemically stimulated. | es_ES |
dc.description.sponsorship | The authors thank the Portuguese Foundation for Science and Technology (FCT) for financial support under project PTDC/EEI-SII/5582/2014, Strategic Funding UID/FIS/04650/2013 and grants SFRH/BPD/90870/2012 (C.R.) and SFRH/BPD/121526/2016 (D.M.C). The authors acknowledge funding by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (AEI/FEDER, UE) and from the Basque Government Industry Department under the ELKARTEK program. JLGR, LC, RSS and AS acknowledge funding by the Conselleria de Educacion, Investigacion, Cultura y Deporte of the Generalitat Valenciana through PROMETEO/2016/063 project. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development. This work was partially financed with FEDER funds (CIBERONC (CB16/12/00284)). The authors acknowledge the assistance and advice of Electron Microscopy Service of the UPV. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Molecular Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Tissue engineering | es_ES |
dc.subject | Bone differentiation | es_ES |
dc.subject | Poly(vinylidene fluoride) | es_ES |
dc.subject | Microspheres | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijms18112391 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CB16%2F12%2F00284/ES/CANCER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F5582%2F2001/PT/OS EFEITOS DO PODER E DA DIMENSÃO DOS GRUPOS NA VARIABILIDADE "CROSS-SITUATIONAL"/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//SFRH%2FBPD%2F121526%2F2016/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876/147414/PT/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F063/ES/MEDULA OSEA ARTIFICIAL PARA PERSONALIZAR EL TRATAMIENTO DE PACIENTES DE CANCERES DE SANGRE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F90870%2F2012/PT/TAILORING ELECTRO-MECHANICALLY ACTIVE MATERIALS FOR TISSUE ENGINEERING APPLICATIONS/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/3599-PPCDT/121526/PT/Heterometallic Metal-organic Frameworks: Smart Materials for Advanced Applications/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Sobreiro-Almeida, R.; Tamaño-Machiavello, MN.; Carvalho, E.; Cordon, L.; Doria, S.; Senent, L.; Correia, DM.... (2017). Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride) Microsphere Substrates. International Journal of Molecular Sciences. 18(11):1-17. https://doi.org/10.3390/ijms18112391 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijms18112391 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 1422-0067 | es_ES |
dc.relation.pasarela | S\351094 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Gobierno Vasco/Eusko Jaurlaritza | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Godara, P., Nordon, R. E., & McFarland, C. D. (2008). Mesenchymal stem cells in tissue engineering. Journal of Chemical Technology & Biotechnology, 83(4), 397-407. doi:10.1002/jctb.1901 | es_ES |
dc.description.references | Nombela-Arrieta, C., Ritz, J., & Silberstein, L. E. (2011). The elusive nature and function of mesenchymal stem cells. Nature Reviews Molecular Cell Biology, 12(2), 126-131. doi:10.1038/nrm3049 | es_ES |
dc.description.references | Fu, R.-H., Wang, Y.-C., Liu, S.-P., Huang, C.-M., Kang, Y.-H., Tsai, C.-H., … Lin, S.-Z. (2011). Differentiation of Stem Cells: Strategies for Modifying Surface Biomaterials. Cell Transplantation, 20(1), 37-47. doi:10.3727/096368910x532756 | es_ES |
dc.description.references | Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 35(2). doi:10.1042/bsr20150025 | es_ES |
dc.description.references | Leferink, A. M., Santos, D., Karperien, M., Truckenmüller, R. K., van Blitterswijk, C. A., & Moroni, L. (2015). Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds. Integrative Biology, 7(12), 1574-1586. doi:10.1039/c5ib00177c | es_ES |
dc.description.references | Duncan, R. (2003). The dawning era of polymer therapeutics. Nature Reviews Drug Discovery, 2(5), 347-360. doi:10.1038/nrd1088 | es_ES |
dc.description.references | Phillips, J. E., Petrie, T. A., Creighton, F. P., & García, A. J. (2010). Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries. Acta Biomaterialia, 6(1), 12-20. doi:10.1016/j.actbio.2009.07.023 | es_ES |
dc.description.references | Alves, N. M., Pashkuleva, I., Reis, R. L., & Mano, J. F. (2010). Controlling Cell Behavior Through the Design of Polymer Surfaces. Small, 6(20), 2208-2220. doi:10.1002/smll.201000233 | es_ES |
dc.description.references | Chen, Y., Cho, M. R., Mak, A. F. T., Li, J. S., Wang, M., & Sun, S. (2007). Morphology and adhesion of mesenchymal stem cells on PLLA, apatite and apatite/collagen surfaces. Journal of Materials Science: Materials in Medicine, 19(7), 2563-2567. doi:10.1007/s10856-007-3195-2 | es_ES |
dc.description.references | Hong, S.-J., Yu, H.-S., & Kim, H.-W. (2009). Preparation of porous bioactive ceramic microspheres and in vitro osteoblastic culturing for tissue engineering application. Acta Biomaterialia, 5(5), 1725-1731. doi:10.1016/j.actbio.2008.12.006 | es_ES |
dc.description.references | Wang, H., Leeuwenburgh, S. C. G., Li, Y., & Jansen, J. A. (2012). The Use of Micro- and Nanospheres as Functional Components for Bone Tissue Regeneration. Tissue Engineering Part B: Reviews, 18(1), 24-39. doi:10.1089/ten.teb.2011.0184 | es_ES |
dc.description.references | Ribeiro, C., Moreira, S., Correia, V., Sencadas, V., Rocha, J. G., Gama, F. M., … Lanceros-Méndez, S. (2012). Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Advances, 2(30), 11504. doi:10.1039/c2ra21841k | es_ES |
dc.description.references | Ribeiro, C., Sencadas, V., Correia, D. M., & Lanceros-Méndez, S. (2015). Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 136, 46-55. doi:10.1016/j.colsurfb.2015.08.043 | es_ES |
dc.description.references | Ribeiro, C., Correia, V., Martins, P., Gama, F. M., & Lanceros-Mendez, S. (2016). Proving the suitability of magnetoelectric stimuli for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 140, 430-436. doi:10.1016/j.colsurfb.2015.12.055 | es_ES |
dc.description.references | Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006 | es_ES |
dc.description.references | Ribeiro, C., Panadero, J. A., Sencadas, V., Lanceros-Méndez, S., Tamaño, M. N., Moratal, D., … Gómez Ribelles, J. L. (2012). Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films. Biomedical Materials, 7(3), 035004. doi:10.1088/1748-6041/7/3/035004 | es_ES |
dc.description.references | Damaraju, S. M., Wu, S., Jaffe, M., & Arinzeh, T. L. (2013). Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomedical Materials, 8(4), 045007. doi:10.1088/1748-6041/8/4/045007 | es_ES |
dc.description.references | Ribeiro, C., Pärssinen, J., Sencadas, V., Correia, V., Miettinen, S., Hytönen, V. P., & Lanceros-Méndez, S. (2014). Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research Part A, 103(6), 2172-2175. doi:10.1002/jbm.a.35368 | es_ES |
dc.description.references | Rodrigues, M. T., Gomes, M. E., Mano, J. F., & Reis, R. L. (2008). β-PVDF Membranes Induce Cellular Proliferation and Differentiation in Static and Dynamic Conditions. Materials Science Forum, 587-588, 72-76. doi:10.4028/www.scientific.net/msf.587-588.72 | es_ES |
dc.description.references | Pärssinen, J., Hammarén, H., Rahikainen, R., Sencadas, V., Ribeiro, C., Vanhatupa, S., … Hytönen, V. P. (2014). Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride). Journal of Biomedical Materials Research Part A, 103(3), 919-928. doi:10.1002/jbm.a.35234 | es_ES |
dc.description.references | Martinez, C., Hofmann, T. J., Marino, R., Dominici, M., & Horwitz, E. M. (2007). Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood, 109(10), 4245-4248. doi:10.1182/blood-2006-08-039347 | es_ES |
dc.description.references | Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006). Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue. Stem Cells, 24(5), 1294-1301. doi:10.1634/stemcells.2005-0342 | es_ES |
dc.description.references | Delorme, B., Ringe, J., Gallay, N., Le Vern, Y., Kerboeuf, D., Jorgensen, C., … Charbord, P. (2008). Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood, 111(5), 2631-2635. doi:10.1182/blood-2007-07-099622 | es_ES |
dc.description.references | Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. ., Krause, D. S., … Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. doi:10.1080/14653240600855905 | es_ES |
dc.description.references | Jin, H. J., Park, S. K., Oh, W., Yang, Y. S., Kim, S. W., & Choi, S. J. (2009). Down-regulation of CD105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 381(4), 676-681. doi:10.1016/j.bbrc.2009.02.118 | es_ES |
dc.description.references | Correia, D. M., Gonçalves, R., Ribeiro, C., Sencadas, V., Botelho, G., Ribelles, J. L. G., & Lanceros-Méndez, S. (2014). Electrosprayed poly(vinylidene fluoride) microparticles for tissue engineering applications. RSC Adv., 4(62), 33013-33021. doi:10.1039/c4ra04581e | es_ES |
dc.description.references | Costa, R., Ribeiro, C., Lopes, A. C., Martins, P., Sencadas, V., Soares, R., & Lanceros-Mendez, S. (2012). Osteoblast, fibroblast and in vivo biological response to poly(vinylidene fluoride) based composite materials. Journal of Materials Science: Materials in Medicine, 24(2), 395-403. doi:10.1007/s10856-012-4808-y | es_ES |
dc.description.references | Golub, E. E., & Boesze-Battaglia, K. (2007). The role of alkaline phosphatase in mineralization. Current Opinion in Orthopaedics, 18(5), 444-448. doi:10.1097/bco.0b013e3282630851 | es_ES |
dc.description.references | El-Amin, S. F., Botchwey, E., Tuli, R., Kofron, M. D., Mesfin, A., Sethuraman, S., … Laurencin, C. T. (2006). Human osteoblast cells: Isolation, characterization, and growth on polymers for musculoskeletal tissue engineering. Journal of Biomedical Materials Research Part A, 76A(3), 439-449. doi:10.1002/jbm.a.30411 | es_ES |
dc.description.references | Roach, H. (1994). Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biology International, 18(6), 617-628. doi:10.1006/cbir.1994.1088 | es_ES |
dc.description.references | Cha, K. J., Hong, J. M., Cho, D.-W., & Kim, D. S. (2013). Enhanced osteogenic fate and function of MC3T3-E1 cells on nanoengineered polystyrene surfaces with nanopillar and nanopore arrays. Biofabrication, 5(2), 025007. doi:10.1088/1758-5082/5/2/025007 | es_ES |
dc.description.references | Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., … Oreffo, R. O. C. (2007). The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 6(12), 997-1003. doi:10.1038/nmat2013 | es_ES |
dc.description.references | Kilian, K. A., Bugarija, B., Lahn, B. T., & Mrksich, M. (2010). Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences, 107(11), 4872-4877. doi:10.1073/pnas.0903269107 | es_ES |
dc.description.references | Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126(4), 677-689. doi:10.1016/j.cell.2006.06.044 | es_ES |
dc.description.references | McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment. Developmental Cell, 6(4), 483-495. doi:10.1016/s1534-5807(04)00075-9 | es_ES |
dc.description.references | Wiesmann, A., Bühring, H.-J., Mentrup, C., & Wiesmann, H.-P. (2006). Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head & Face Medicine, 2(1). doi:10.1186/1746-160x-2-8 | es_ES |
dc.description.references | Takedachi, M., Oohara, H., Smith, B. J., Iyama, M., Kobashi, M., Maeda, K., … Murakami, S. (2012). CD73-generated adenosine promotes osteoblast differentiation. Journal of Cellular Physiology, 227(6), 2622-2631. doi:10.1002/jcp.23001 | es_ES |
dc.description.references | Ode, A., Schoon, J., Kurtz, A., Gaetjen, M., Ode, J., … Duda, G. (2013). CD73/5’-ecto-nucleotidase acts as a regulatory factor in osteo-/chondrogenic differentiation of mechanically stimulated mesenchymal stromal cells. European Cells and Materials, 25, 37-47. doi:10.22203/ecm.v025a03 | es_ES |
dc.description.references | Williams, A. R., & Hare, J. M. (2011). Mesenchymal Stem Cells. Circulation Research, 109(8), 923-940. doi:10.1161/circresaha.111.243147 | es_ES |
dc.description.references | Gregory, C. A., Grady Gunn, W., Peister, A., & Prockop, D. J. (2004). An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Analytical Biochemistry, 329(1), 77-84. doi:10.1016/j.ab.2004.02.002 | es_ES |