- -

Mesoporous Silica-Based Materials with Bactericidal Properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mesoporous Silica-Based Materials with Bactericidal Properties

Mostrar el registro completo del ítem

Bernardos Bau, A.; Piacenza, E.; Sancenón Galarza, F.; Hamidi, M.; Maleki, A.; Turner, R.; Martínez-Máñez, R. (2019). Mesoporous Silica-Based Materials with Bactericidal Properties. Small. 15(24):1-34. https://doi.org/10.1002/smll.201900669

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140936

Ficheros en el ítem

Metadatos del ítem

Título: Mesoporous Silica-Based Materials with Bactericidal Properties
Autor: Bernardos Bau, Andrea Piacenza, E. Sancenón Galarza, Félix Hamidi, M. Maleki, A Turner, R.J. Martínez-Máñez, Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Bacterial infections are the main cause of chronic infections and even mortality. In fact, due to extensive use of antibiotics and, then, emergence of antibiotic resistance, treatment of such infections by conventional ...[+]
Palabras clave: Antibiotics , Controllable drug delivery systems , Mesoporous silica materials , Nanoparticles
Derechos de uso: Reserva de todos los derechos
Fuente:
Small. (issn: 1613-6810 )
DOI: 10.1002/smll.201900669
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/smll.201900669
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/
info:eu-repo/grantAgreement/MINECO//IJCI-2014-21534/ES/IJCI-2014-21534/
info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/
info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/
Descripción: This is the peer reviewed version of the following article: Bernardos, A., Piacenza, E., Sancenón, F., Hamidi, M., Maleki, A., Turner, R. J., Martínez-Máñez, R., Mesoporous Silica-Based Materials with Bactericidal Properties. Small 2019, 15, 1900669. https://doi.org/10.1002/smll.201900669 , which has been published in final form at https://doi.org/10.1002/smll.201900669. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Agradecimientos:
The authors thank the Spanish Government (projects MAT2015-64139-C4-1-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047 and PROMETEO/2018/024) for support. A.B. thanks ...[+]
Tipo: Artículo

References

Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. de, Rojo, T., … Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499-511. doi:10.1016/j.tibtech.2012.06.004

Von Nussbaum, F., Brands, M., Hinzen, B., Weigand, S., & Häbich, D. (2006). Antibacterial Natural Products in Medicinal Chemistry—Exodus or Revival? Angewandte Chemie International Edition, 45(31), 5072-5129. doi:10.1002/anie.200600350

Ramalingam, V., Rajaram, R., PremKumar, C., Santhanam, P., Dhinesh, P., Vinothkumar, S., & Kaleshkumar, K. (2013). Biosynthesis of silver nanoparticles from deep sea bacteriumPseudomonas aeruginosaJQ989348 for antimicrobial, antibiofilm, and cytotoxic activity. Journal of Basic Microbiology, 54(9), 928-936. doi:10.1002/jobm.201300514 [+]
Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. de, Rojo, T., … Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499-511. doi:10.1016/j.tibtech.2012.06.004

Von Nussbaum, F., Brands, M., Hinzen, B., Weigand, S., & Häbich, D. (2006). Antibacterial Natural Products in Medicinal Chemistry—Exodus or Revival? Angewandte Chemie International Edition, 45(31), 5072-5129. doi:10.1002/anie.200600350

Ramalingam, V., Rajaram, R., PremKumar, C., Santhanam, P., Dhinesh, P., Vinothkumar, S., & Kaleshkumar, K. (2013). Biosynthesis of silver nanoparticles from deep sea bacteriumPseudomonas aeruginosaJQ989348 for antimicrobial, antibiofilm, and cytotoxic activity. Journal of Basic Microbiology, 54(9), 928-936. doi:10.1002/jobm.201300514

Beyth, N., Houri-Haddad, Y., Domb, A., Khan, W., & Hazan, R. (2015). Alternative Antimicrobial Approach: Nano-Antimicrobial Materials. Evidence-Based Complementary and Alternative Medicine, 2015, 1-16. doi:10.1155/2015/246012

El Zowalaty, M., Ibrahim, N. A., Salama, M., Shameli, K., Usman, M., & Zainuddin, N. (2013). Synthesis, characterization, and antimicrobial properties of copper nanoparticles. International Journal of Nanomedicine, 4467. doi:10.2147/ijn.s50837

Witte, W. (2004). International dissemination of antibiotic resistant strains of bacterial pathogens. Infection, Genetics and Evolution, 4(3), 187-191. doi:10.1016/j.meegid.2003.12.005

Food and Agriculture Organization of the United Nations (FAO) World Organization for Animal Health (OIE) and World Health Organization (WHO) The Tripartite's Commitment Providing multi‐sectoral collaborative leadership in addressing health challenges http://www.oie.int/fileadmin/Home/eng/Media_Center/docs/pdf/Tripartite_2017.pdf(accessed: October 2017).

Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176-182. doi:10.1016/j.tim.2006.02.006

Costerton, J. W., Geesey, G. G., & Cheng, K.-J. (1978). How Bacteria Stick. Scientific American, 238(1), 86-95. doi:10.1038/scientificamerican0178-86

Branda, S. S., Vik, Å., Friedman, L., & Kolter, R. (2005). Biofilms: the matrix revisited. Trends in Microbiology, 13(1), 20-26. doi:10.1016/j.tim.2004.11.006

Kolter, R., & Greenberg, E. P. (2006). The superficial life of microbes. Nature, 441(7091), 300-302. doi:10.1038/441300a

Harrison, J., Turner, R., Marques, L., & Ceri, H. (2005). Biofilms. American Scientist, 93(6), 508. doi:10.1511/2005.56.977

Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623-633. doi:10.1038/nrmicro2415

Flemming, H.-C., Neu, T. R., & Wozniak, D. J. (2007). The EPS Matrix: The «House of Biofilm Cells». Journal of Bacteriology, 189(22), 7945-7947. doi:10.1128/jb.00858-07

Harrison, J. J., Ceri, H., & Turner, R. J. (2007). Multimetal resistance and tolerance in microbial biofilms. Nature Reviews Microbiology, 5(12), 928-938. doi:10.1038/nrmicro1774

Hobby, G. L., Meyer, K., & Chaffee, E. (1942). Observations on the Mechanism of Action of Penicillin. Experimental Biology and Medicine, 50(2), 281-285. doi:10.3181/00379727-50-13773

Bigger, J. (1944). TREATMENT OF STAPHYLOCOCCAL INFECTIONS WITH PENICILLIN BY INTERMITTENT STERILISATION. The Lancet, 244(6320), 497-500. doi:10.1016/s0140-6736(00)74210-3

Lewis, K. (2010). Persister Cells. Annual Review of Microbiology, 64(1), 357-372. doi:10.1146/annurev.micro.112408.134306

Harrison, J. J., Ceri, H., Roper, N. J., Badry, E. A., Sproule, K. M., & Turner, R. J. (2005). Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology, 151(10), 3181-3195. doi:10.1099/mic.0.27794-0

Workentine, M. L., Harrison, J. J., Weljie, A. M., Tran, V. A., Stenroos, P. U., Tremaroli, V., … Turner, R. J. (2010). Phenotypic and metabolic profiling of colony morphology variants evolved fromPseudomonas fluorescensbiofilms. Environmental Microbiology. doi:10.1111/j.1462-2920.2010.02185.x

Harrison, J. J., Turner, R. J., & Ceri, H. (2005). BMC Microbiology, 5(1), 53. doi:10.1186/1471-2180-5-53

Neut, D., C Van Der Mei, H., K Bulstra, S., & J Busscher, H. (2007). The role of small-colony variants in failure to diagnose and treat biofilm infections in orthopedics. Acta Orthopaedica, 78(3), 299-308. doi:10.1080/17453670710013843

Singh, R., Ray, P., Das, A., & Sharma, M. (2009). Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. Journal of Medical Microbiology, 58(8), 1067-1073. doi:10.1099/jmm.0.009720-0

Piacenza, E., Presentato, A., Zonaro, E., Lemire, J. A., Demeter, M., Vallini, G., … Lampis, S. (2017). Antimicrobial activity of biogenically produced spherical Se-nanomaterials embedded in organic material againstPseudomonas aeruginosaand Staphylococcus aureusstrains on hydroxyapatite-coated surfaces. Microbial Biotechnology, 10(4), 804-818. doi:10.1111/1751-7915.12700

Donlan, R. M. (2016). Microbial Biofilms, Second Edition. Emerging Infectious Diseases, 22(6), 1142-1142. doi:10.3201/eid2206.160282

Donlan, R. M. (2000). Role of Biofilms in Antimicrobial Resistance. ASAIO Journal, 46(6), S47-S52. doi:10.1097/00002480-200011000-00037

APPENZELLER, T. (1991). The Man Who Dared to Think Small. Science, 254(5036), 1300-1300. doi:10.1126/science.254.5036.1300

Gatoo, M. A., Naseem, S., Arfat, M. Y., Mahmood Dar, A., Qasim, K., & Zubair, S. (2014). Physicochemical Properties of Nanomaterials: Implication in Associated Toxic Manifestations. BioMed Research International, 2014, 1-8. doi:10.1155/2014/498420

Parak, W. J., Gerion, D., Pellegrino, T., Zanchet, D., Micheel, C., Williams, S. C., … Alivisatos, A. P. (2003). Biological applications of colloidal nanocrystals. Nanotechnology, 14(7), R15-R27. doi:10.1088/0957-4484/14/7/201

Anderson, E. B., & Long, T. E. (2010). Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer, 51(12), 2447-2454. doi:10.1016/j.polymer.2010.02.006

Muñoz-Bonilla, A., & Fernández-García, M. (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, 37(2), 281-339. doi:10.1016/j.progpolymsci.2011.08.005

Sauvet, G., Fortuniak, W., Kazmierski, K., & Chojnowski, J. (2003). Amphiphilic block and statistical siloxane copolymers with antimicrobial activity. Journal of Polymer Science Part A: Polymer Chemistry, 41(19), 2939-2948. doi:10.1002/pola.10895

Chung, D., Papadakis, S. E., & Yam, K. L. (2003). Evaluation of a polymer coating containing triclosan as the antimicrobial layer for packaging materials. International Journal of Food Science and Technology, 38(2), 165-169. doi:10.1046/j.1365-2621.2003.00657.x

Lee, D.-S., Woo, J.-Y., Ahn, C.-B., & Je, J.-Y. (2014). Chitosan–hydroxycinnamic acid conjugates: Preparation, antioxidant and antimicrobial activity. Food Chemistry, 148, 97-104. doi:10.1016/j.foodchem.2013.10.019

Loomba, L., & Scarabelli, T. (2013). Metallic nanoparticles and their medicinal potential. Part I: gold and silver colloids. Therapeutic Delivery, 4(7), 859-873. doi:10.4155/tde.13.55

Emerich, D. F. (2005). Nanomedicine – prospective therapeutic and diagnostic applications. Expert Opinion on Biological Therapy, 5(1), 1-5. doi:10.1517/14712598.5.1.1

Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76-83. doi:10.1016/j.biotechadv.2008.09.002

Chatterjee, S., Bandyopadhyay, A., & Sarkar, K. (2011). Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. Journal of Nanobiotechnology, 9(1), 34. doi:10.1186/1477-3155-9-34

Allahverdiyev, A. M., Abamor, E. S., Bagirova, M., & Rafailovich, M. (2011). Antimicrobial effects of TiO2and Ag2O nanoparticles against drug-resistant bacteria andleishmaniaparasites. Future Microbiology, 6(8), 933-940. doi:10.2217/fmb.11.78

Esteban-Tejeda, L., Malpartida, F., Esteban-Cubillo, A., Pecharromán, C., & Moya, J. S. (2009). Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology, 20(50), 505701. doi:10.1088/0957-4484/20/50/505701

Palanikumar, L., Balachandran, C., & Ramasamy, S. N. (2014). Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnology, 8(2), 111-117. doi:10.1049/iet-nbt.2012.0008

Yanagisawa, T., Shimizu, T., Kuroda, K., & Kato, C. (1990). The Preparation of Alkyltriinethylaininonium–Kaneinite Complexes and Their Conversion to Microporous Materials. Bulletin of the Chemical Society of Japan, 63(4), 988-992. doi:10.1246/bcsj.63.988

Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020

Li, W., Liu, J., & Zhao, D. (2016). Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 1(6). doi:10.1038/natrevmats.2016.23

Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t

SLOWING, I., VIVEROESCOTO, J., WU, C., & LIN, V. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers☆. Advanced Drug Delivery Reviews, 60(11), 1278-1288. doi:10.1016/j.addr.2008.03.012

Colilla, M., González, B., & Vallet-Regí, M. (2013). Mesoporous silicananoparticles for the design of smart delivery nanodevices. Biomater. Sci., 1(2), 114-134. doi:10.1039/c2bm00085g

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n

Chen, Y., Chen, H., & Shi, J. (2013). In Vivo Bio-Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles. Advanced Materials, 25(23), 3144-3176. doi:10.1002/adma.201205292

Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j

Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862. doi:10.1039/c3cs35405a

Hao, N., Li, L., & Tang, F. (2016). Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews, 62(2), 57-77. doi:10.1080/09506608.2016.1190118

Asefa, T., & Tao, Z. (2012). Biocompatibility of Mesoporous Silica Nanoparticles. Chemical Research in Toxicology, 25(11), 2265-2284. doi:10.1021/tx300166u

Florek, J., Caillard, R., & Kleitz, F. (2017). Evaluation of mesoporous silica nanoparticles for oral drug delivery – current status and perspective of MSNs drug carriers. Nanoscale, 9(40), 15252-15277. doi:10.1039/c7nr05762h

Maleki, A., Kettiger, H., Schoubben, A., Rosenholm, J. M., Ambrogi, V., & Hamidi, M. (2017). Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. Journal of Controlled Release, 262, 329-347. doi:10.1016/j.jconrel.2017.07.047

Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g

Rosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges. Nanoscale, 2(10), 1870. doi:10.1039/c0nr00156b

Song, Y., Li, Y., Xu, Q., & Liu, Z. (2016). Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. International Journal of Nanomedicine, Volume 12, 87-110. doi:10.2147/ijn.s117495

Moreira, A. F., Dias, D. R., & Correia, I. J. (2016). Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous and Mesoporous Materials, 236, 141-157. doi:10.1016/j.micromeso.2016.08.038

Baeza, A., Colilla, M., & Vallet-Regí, M. (2014). Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opinion on Drug Delivery, 12(2), 319-337. doi:10.1517/17425247.2014.953051

Wen, J., Yang, K., Liu, F., Li, H., Xu, Y., & Sun, S. (2017). Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chemical Society Reviews, 46(19), 6024-6045. doi:10.1039/c7cs00219j

Niedermayer, S., Weiss, V., Herrmann, A., Schmidt, A., Datz, S., Müller, K., … Bräuchle, C. (2015). Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery. Nanoscale, 7(17), 7953-7964. doi:10.1039/c4nr07245f

Yang, K., Luo, H., Zeng, M., Jiang, Y., Li, J., & Fu, X. (2015). Intracellular pH-Triggered, Targeted Drug Delivery to Cancer Cells by Multifunctional Envelope-Type Mesoporous Silica Nanocontainers. ACS Applied Materials & Interfaces, 7(31), 17399-17407. doi:10.1021/acsami.5b04684

Lin, D., Cheng, Q., Jiang, Q., Huang, Y., Yang, Z., Han, S., … Dong, A. (2013). Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo. Nanoscale, 5(10), 4291. doi:10.1039/c3nr00294b

Tan, L., Yang, M.-Y., Wu, H.-X., Tang, Z.-W., Xiao, J.-Y., Liu, C.-J., & Zhuo, R.-X. (2015). Glucose- and pH-Responsive Nanogated Ensemble Based on Polymeric Network Capped Mesoporous Silica. ACS Applied Materials & Interfaces, 7(11), 6310-6316. doi:10.1021/acsami.5b00631

Díez, P., Sánchez, A., Gamella, M., Martínez-Ruíz, P., Aznar, E., de la Torre, C., … Pingarrón, J. M. (2014). Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. Journal of the American Chemical Society, 136(25), 9116-9123. doi:10.1021/ja503578b

Guardado-Alvarez, T. M., Sudha Devi, L., Russell, M. M., Schwartz, B. J., & Zink, J. I. (2013). Activation of Snap-Top Capped Mesoporous Silica Nanocontainers Using Two Near-Infrared Photons. Journal of the American Chemical Society, 135(38), 14000-14003. doi:10.1021/ja407331n

Chen, T., Yang, N., & Fu, J. (2013). Controlled release of cargo molecules from hollow mesoporous silica nanoparticles based on acid and base dual-responsive cucurbit[7]uril pseudorotaxanes. Chemical Communications, 49(58), 6555. doi:10.1039/c3cc43221a

Huang, X., & Du, X. (2014). Pillar[6]arene-Valved Mesoporous Silica Nanovehicles for Multiresponsive Controlled Release. ACS Applied Materials & Interfaces, 6(22), 20430-20436. doi:10.1021/am506004q

Sun, X., Zhao, Y., Lin, V. S.-Y., Slowing, I. I., & Trewyn, B. G. (2011). Luciferase and Luciferin Co-immobilized Mesoporous Silica Nanoparticle Materials for Intracellular Biocatalysis. Journal of the American Chemical Society, 133(46), 18554-18557. doi:10.1021/ja2080168

Muhammad, F., Wang, A., Guo, M., Zhao, J., Qi, W., Yingjie, G., … Zhu, G. (2013). pH Dictates the Release of Hydrophobic Drug Cocktail from Mesoporous Nanoarchitecture. ACS Applied Materials & Interfaces, 5(22), 11828-11835. doi:10.1021/am4035027

Huang, S., Song, L., Xiao, Z., Hu, Y., Peng, M., Li, J., … Yuan, C. (2016). Graphene quantum dot-decorated mesoporous silica nanoparticles for high aspirin loading capacity and its pH-triggered release. Analytical Methods, 8(12), 2561-2567. doi:10.1039/c5ay03176a

Liu, C., Zheng, J., Deng, L., Ma, C., Li, J., Li, Y., … Yang, R. (2015). Targeted Intracellular Controlled Drug Delivery and Tumor Therapy through in Situ Forming Ag Nanogates on Mesoporous Silica Nanocontainers. ACS Applied Materials & Interfaces, 7(22), 11930-11938. doi:10.1021/acsami.5b01787

Wen, J., Yang, K., Xu, Y., Li, H., Liu, F., & Sun, S. (2016). Construction of A Triple-Stimuli-Responsive System Based on Cerium Oxide Coated Mesoporous Silica Nanoparticles. Scientific Reports, 6(1). doi:10.1038/srep38931

Meng, H.-M., Lu, L., Zhao, X.-H., Chen, Z., Zhao, Z., Yang, C., … Tan, W. (2015). Multiple Functional Nanoprobe for Contrast-Enhanced Bimodal Cellular Imaging and Targeted Therapy. Analytical Chemistry, 87(8), 4448-4454. doi:10.1021/acs.analchem.5b00337

He, D., Li, X., He, X., Wang, K., Tang, J., Yang, X., … Zou, Z. (2015). Noncovalent assembly of reduced graphene oxide and alkyl-grafted mesoporous silica: an effective drug carrier for near-infrared light-responsive controlled drug release. Journal of Materials Chemistry B, 3(27), 5588-5594. doi:10.1039/c5tb00581g

De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g

De la Torre, C., Mondragón, L., Coll, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Orzáez, M. (2014). Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 20(47), 15309-15314. doi:10.1002/chem.201404382

Bhat, R., Ribes, À., Mas, N., Aznar, E., Sancenón, F., Marcos, M. D., … Martínez-Máñez, R. (2016). Thrombin-Responsive Gated Silica Mesoporous Nanoparticles As Coagulation Regulators. Langmuir, 32(5), 1195-1200. doi:10.1021/acs.langmuir.5b04038

Li, X.-L., Hao, N., Chen, H.-Y., & Xu, J.-J. (2014). Tumor-Marker-Mediated «on-Demand» Drug Release and Real-Time Monitoring System Based on Multifunctional Mesoporous Silica Nanoparticles. Analytical Chemistry, 86(20), 10239-10245. doi:10.1021/ac502553u

Chang, Y.-T., Liao, P.-Y., Sheu, H.-S., Tseng, Y.-J., Cheng, F.-Y., & Yeh, C.-S. (2012). Near-Infrared Light-Responsive Intracellular Drug and siRNA Release Using Au Nanoensembles with Oligonucleotide-Capped Silica Shell. Advanced Materials, 24(25), 3309-3314. doi:10.1002/adma.201200785

Zhou, S., Du, X., Cui, F., & Zhang, X. (2013). Multi-Responsive and Logic Controlled Release of DNA-Gated Mesoporous Silica Vehicles Functionalized with Intercalators for Multiple Delivery. Small, 10(5), 980-988. doi:10.1002/smll.201302312

Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062b

Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d

Hao, N., Chen, X., Jeon, S., & Yan, M. (2015). Carbohydrate-Conjugated Hollow Oblate Mesoporous Silica Nanoparticles as Nanoantibiotics to Target Mycobacteria. Advanced Healthcare Materials, 4(18), 2797-2801. doi:10.1002/adhm.201500491

Ruehle, B., Clemens, D. L., Lee, B.-Y., Horwitz, M. A., & Zink, J. I. (2017). A Pathogen-Specific Cargo Delivery Platform Based on Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 139(19), 6663-6668. doi:10.1021/jacs.7b01278

Díez, P., Sánchez, A., Torre, C. de la, Gamella, M., Martínez-Ruíz, P., Aznar, E., … Villalonga, R. (2016). Neoglycoenzyme-Gated Mesoporous Silica Nanoparticles: Toward the Design of Nanodevices for Pulsatile Programmed Sequential Delivery. ACS Applied Materials & Interfaces, 8(12), 7657-7665. doi:10.1021/acsami.5b12645

Liu, J., Zhang, B., Luo, Z., Ding, X., Li, J., Dai, L., … Cai, K. (2015). Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Nanoscale, 7(8), 3614-3626. doi:10.1039/c5nr00072f

Zhou, J., Hao, N., De Zoyza, T., Yan, M., & Ramström, O. (2015). Lectin-gated, mesoporous, photofunctionalized glyconanoparticles for glutathione-responsive drug delivery. Chemical Communications, 51(48), 9833-9836. doi:10.1039/c5cc02907d

Pascual, L., Cerqueira-Coutinho, C., García-Fernández, A., de Luis, B., Bernardes, E. S., Albernaz, M. S., … Sancenón, F. (2017). MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Nanomedicine: Nanotechnology, Biology and Medicine, 13(8), 2495-2505. doi:10.1016/j.nano.2017.08.006

Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362

Zhao, Z., Meng, H., Wang, N., Donovan, M. J., Fu, T., You, M., … Tan, W. (2013). A Controlled-Release Nanocarrier with Extracellular pH Value Driven Tumor Targeting and Translocation for Drug Delivery. Angewandte Chemie International Edition, 52(29), 7487-7491. doi:10.1002/anie.201302557

Paris, J. L., Cabañas, M. V., Manzano, M., & Vallet-Regí, M. (2015). Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers. ACS Nano, 9(11), 11023-11033. doi:10.1021/acsnano.5b04378

Baeza, A., Guisasola, E., Ruiz-Hernández, E., & Vallet-Regí, M. (2012). Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials, 24(3), 517-524. doi:10.1021/cm203000u

Cauda, V., Engelke, H., Sauer, A., Arcizet, D., Rädler, J., & Bein, T. (2010). Colchicine-Loaded Lipid Bilayer-Coated 50 nm Mesoporous Nanoparticles Efficiently Induce Microtubule Depolymerization upon Cell Uptake. Nano Letters, 10(7), 2484-2492. doi:10.1021/nl100991w

Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456d

Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie International Edition, 50(9), 2138-2140. doi:10.1002/anie.201004133

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Pascual, L., Sayed, S. E., Martínez-Máñez, R., Costero, A. M., Gil, S., Gaviña, P., & Sancenón, F. (2016). Acetylcholinesterase-Capped Mesoporous Silica Nanoparticles That Open in the Presence of Diisopropylfluorophosphate (a Sarin or Soman Simulant). Organic Letters, 18(21), 5548-5551. doi:10.1021/acs.orglett.6b02793

Ultimo, A., Giménez, C., Bartovsky, P., Aznar, E., Sancenón, F., Marcos, M. D., … Murguía, J. R. (2016). Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal, 22(5), 1582-1586. doi:10.1002/chem.201504629

Lozano-Torres, B., Pascual, L., Bernardos, A., Marcos, M. D., Jeppesen, J. O., Salinas, Y., … Sancenón, F. (2017). Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chemical Communications, 53(25), 3559-3562. doi:10.1039/c7cc00186j

Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511

Ribes, À., Aznar, E., Bernardos, A., Marcos, M. D., Amorós, P., Martínez-Máñez, R., & Sancenón, F. (2017). Fluorogenic Sensing of Carcinogenic Bisphenol A using Aptamer-Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 23(36), 8581-8584. doi:10.1002/chem.201701024

Oroval, M., Díez, P., Aznar, E., Coll, C., Marcos, M. D., Sancenón, F., … Martínez-Máñez, R. (2016). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 23(6), 1353-1360. doi:10.1002/chem.201604104

De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ -Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C 9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161

Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2018). Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 281, 58-69. doi:10.1016/j.jconrel.2018.05.007

García-Fernández, A., García-Laínez, G., Ferrándiz, M. L., Aznar, E., Sancenón, F., Alcaraz, M. J., … Orzáez, M. (2017). Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 248, 60-70. doi:10.1016/j.jconrel.2017.01.002

Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053

De la Torre, C., Mondragón, L., Coll, C., García-Fernández, A., Sancenón, F., Martínez-Máñez, R., … Orzáez, M. (2015). Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 21(44), 15506-15510. doi:10.1002/chem.201502413

De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822

Yang, Y., & Yu, C. (2016). Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 317-332. doi:10.1016/j.nano.2015.10.018

Azzopardi, E. A., Ferguson, E. L., & Thomas, D. W. (2012). The enhanced permeability retention effect: a new paradigm for drug targeting in infection. Journal of Antimicrobial Chemotherapy, 68(2), 257-274. doi:10.1093/jac/dks379

Benoit, D. S., & Koo, H. (2016). Targeted, triggered drug delivery to tumor and biofilm microenvironments. Nanomedicine, 11(8), 873-879. doi:10.2217/nnm-2016-0014

Peulen, T.-O., & Wilkinson, K. J. (2011). Diffusion of Nanoparticles in a Biofilm. Environmental Science & Technology, 45(8), 3367-3373. doi:10.1021/es103450g

Hidalgo, G., Burns, A., Herz, E., Hay, A. G., Houston, P. L., Wiesner, U., & Lion, L. W. (2009). Functional Tomographic Fluorescence Imaging of pH Microenvironments in Microbial Biofilms by Use of Silica Nanoparticle Sensors. Applied and Environmental Microbiology, 75(23), 7426-7435. doi:10.1128/aem.01220-09

Li, X., Yeh, Y.-C., Giri, K., Mout, R., Landis, R. F., Prakash, Y. S., & Rotello, V. M. (2015). Control of nanoparticle penetration into biofilms through surface design. Chemical Communications, 51(2), 282-285. doi:10.1039/c4cc07737g

Duncan, B., Li, X., Landis, R. F., Kim, S. T., Gupta, A., Wang, L.-S., … Rotello, V. M. (2015). Nanoparticle-Stabilized Capsules for the Treatment of Bacterial Biofilms. ACS Nano, 9(8), 7775-7782. doi:10.1021/acsnano.5b01696

Zhou, J., Jayawardana, K. W., Kong, N., Ren, Y., Hao, N., Yan, M., & Ramström, O. (2015). Trehalose-Conjugated, Photofunctionalized Mesoporous Silica Nanoparticles for Efficient Delivery of Isoniazid into Mycobacteria. ACS Biomaterials Science & Engineering, 1(12), 1250-1255. doi:10.1021/acsbiomaterials.5b00274

Jayawardana, K. W., Jayawardena, H. S. N., Wijesundera, S. A., De Zoysa, T., Sundhoro, M., & Yan, M. (2015). Selective targeting of Mycobacterium smegmatis with trehalose-functionalized nanoparticles. Chemical Communications, 51(60), 12028-12031. doi:10.1039/c5cc04251h

Pelgrift, R. Y., & Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65(13-14), 1803-1815. doi:10.1016/j.addr.2013.07.011

Lim, W. Q., Phua, S. Z. F., Xu, H. V., Sreejith, S., & Zhao, Y. (2016). Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy. Nanoscale, 8(25), 12510-12519. doi:10.1039/c5nr07853a

Wang, Y., & Gu, H. (2014). Core-Shell-Type Magnetic Mesoporous Silica Nanocomposites for Bioimaging and Therapeutic Agent Delivery. Advanced Materials, 27(3), 576-585. doi:10.1002/adma.201401124

Wang, Y., Ding, X., Chen, Y., Guo, M., Zhang, Y., Guo, X., & Gu, H. (2016). Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials, 101, 207-216. doi:10.1016/j.biomaterials.2016.06.004

Jiang, Z., Dong, B., Chen, B., Wang, J., Xu, L., Zhang, S., & Song, H. (2012). Multifunctional Au@mSiO2/Rhodamine B Isothiocyanate Nanocomposites: Cell Imaging, Photocontrolled Drug Release, and Photothermal Therapy for Cancer Cells. Small, 9(4), 604-612. doi:10.1002/smll.201201558

Liu, J.-N., Bu, W.-B., & Shi, J.-L. (2015). Silica Coated Upconversion Nanoparticles: A Versatile Platform for the Development of Efficient Theranostics. Accounts of Chemical Research, 48(7), 1797-1805. doi:10.1021/acs.accounts.5b00078

Idris, N. M., Gnanasammandhan, M. K., Zhang, J., Ho, P. C., Mahendran, R., & Zhang, Y. (2012). In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature Medicine, 18(10), 1580-1585. doi:10.1038/nm.2933

Croissant, J. G., Fatieiev, Y., & Khashab, N. M. (2017). Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Advanced Materials, 29(9), 1604634. doi:10.1002/adma.201604634

Huang, P., Chen, Y., Lin, H., Yu, L., Zhang, L., Wang, L., … Shi, J. (2017). Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality. Biomaterials, 125, 23-37. doi:10.1016/j.biomaterials.2017.02.018

Chen, Y., Meng, Q., Wu, M., Wang, S., Xu, P., Chen, H., … Shi, J. (2014). Hollow Mesoporous Organosilica Nanoparticles: A Generic Intelligent Framework-Hybridization Approach for Biomedicine. Journal of the American Chemical Society, 136(46), 16326-16334. doi:10.1021/ja508721y

Wang, L., Huo, M., Chen, Y., & Shi, J. (2017). Coordination-Accelerated «Iron Extraction» Enables Fast Biodegradation of Mesoporous Silica-Based Hollow Nanoparticles. Advanced Healthcare Materials, 6(22), 1700720. doi:10.1002/adhm.201700720

Hao, X., Hu, X., Zhang, C., Chen, S., Li, Z., Yang, X., … Zhang, J. (2015). Hybrid Mesoporous Silica-Based Drug Carrier Nanostructures with Improved Degradability by Hydroxyapatite. ACS Nano, 9(10), 9614-9625. doi:10.1021/nn507485j

Yu, L., Chen, Y., Wu, M., Cai, X., Yao, H., Zhang, L., … Shi, J. (2016). «Manganese Extraction» Strategy Enables Tumor-Sensitive Biodegradability and Theranostics of Nanoparticles. Journal of the American Chemical Society, 138(31), 9881-9894. doi:10.1021/jacs.6b04299

Cauda, V., Schlossbauer, A., & Bein, T. (2010). Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous and Mesoporous Materials, 132(1-2), 60-71. doi:10.1016/j.micromeso.2009.11.015

Acosta, C., Barat, J. M., Martínez-Máñez, R., Sancenón, F., Llopis, S., González, N., … Martorell, P. (2018). Toxicological assessment of mesoporous silica particles in the nematode Caenorhabditis elegans. Environmental Research, 166, 61-70. doi:10.1016/j.envres.2018.05.018

Cauda, V., Argyo, C., & Bein, T. (2010). Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. Journal of Materials Chemistry, 20(39), 8693. doi:10.1039/c0jm01390k

He, Q., Shi, J., Zhu, M., Chen, Y., & Chen, F. (2010). The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous and Mesoporous Materials, 131(1-3), 314-320. doi:10.1016/j.micromeso.2010.01.009

Shen, D., Yang, J., Li, X., Zhou, L., Zhang, R., Li, W., … Zhao, D. (2014). Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres. Nano Letters, 14(2), 923-932. doi:10.1021/nl404316v

Qi, G., Li, L., Yu, F., & Wang, H. (2013). Vancomycin-Modified Mesoporous Silica Nanoparticles for Selective Recognition and Killing of Pathogenic Gram-Positive Bacteria Over Macrophage-Like Cells. ACS Applied Materials & Interfaces, 5(21), 10874-10881. doi:10.1021/am403940d

Ruiz-Rico, M., Pérez-Esteve, É., Bernardos, A., Sancenón, F., Martínez-Máñez, R., Marcos, M. D., & Barat, J. M. (2017). Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry, 233, 228-236. doi:10.1016/j.foodchem.2017.04.118

Villegas, M., Garcia-Uriostegui, L., Rodríguez, O., Izquierdo-Barba, I., Salinas, A., Toriz, G., … Delgado, E. (2017). Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial. Bioengineering, 4(4), 80. doi:10.3390/bioengineering4040080

Pędziwiatr-Werbicka, E., Miłowska, K., Podlas, M., Marcinkowska, M., Ferenc, M., Brahmi, Y., … El Kadib, A. (2014). Oleochemical-Tethered SBA-15-Type Silicates with Tunable Nanoscopic Order, Carboxylic Surface, and Hydrophobic Framework: Cellular Toxicity, Hemolysis, and Antibacterial Activity. Chemistry - A European Journal, 20(31), 9596-9606. doi:10.1002/chem.201402583

Ferenc, M., Katir, N., Milowska, K., Bousmina, M., Brahmi, Y., Felczak, A., … El Kadib, A. (2016). Impact of mesoporous silica surface functionalization on human serum albumin interaction, cytotoxicity and antibacterial activity. Microporous and Mesoporous Materials, 231, 47-56. doi:10.1016/j.micromeso.2016.05.012

Li, L., & Wang, H. (2013). Enzyme-Coated Mesoporous Silica Nanoparticles as Efficient Antibacterial Agents In Vivo. Advanced Healthcare Materials, 2(10), 1351-1360. doi:10.1002/adhm.201300051

Bastarrachea, L. J., & Goddard, J. M. (2015). Antimicrobial Coatings with Dual Cationic andN-Halamine Character: Characterization and Biocidal Efficacy. Journal of Agricultural and Food Chemistry, 63(16), 4243-4251. doi:10.1021/acs.jafc.5b00445

Xu, J., Zhang, Y., Zhao, Y., & Zou, X. (2017). Antibacterial activity of N-halamine decorated mesoporous silica nanoparticles. Journal of Physics and Chemistry of Solids, 108, 21-24. doi:10.1016/j.jpcs.2017.04.008

Wang, Y., Li, L., Liu, Y., Ren, X., & Liang, J. (2016). Antibacterial mesoporous molecular sieves modified with polymeric N-halamine. Materials Science and Engineering: C, 69, 1075-1080. doi:10.1016/j.msec.2016.08.017

Wang, Y., Liu, Y., Tian, H., Zhai, Y., Pan, N., Yin, M., … Liang, J. (2017). Preparation and characterization of antibacterial mesoporous sieves with N-halamine. Colloid and Polymer Science, 295(10), 1897-1904. doi:10.1007/s00396-017-4167-9

Wang, Y., Yin, M., Li, Z., Liu, Y., Ren, X., & Huang, T.-S. (2018). Preparation of antimicrobial and hemostatic cotton with modified mesoporous particles for biomedical applications. Colloids and Surfaces B: Biointerfaces, 165, 199-206. doi:10.1016/j.colsurfb.2018.02.045

Sharma, A., Dubey, A., & Kurchania, R. (2016). Vinyl carbazole (VC) functionalized mesoporous silica polymer nanocomposites (SBA/VC) for the antibacterial activity studies. Journal of Porous Materials, 23(4), 851-855. doi:10.1007/s10934-016-0141-z

Cagri Karaburun, A., Asim Kaplancikli, Z., Gundogdu-Karaburun, N., & Demirci, F. (2011). Synthesis, Antibacterial and Antifungal Activities of Some Carbazole Dithiocarbamate Derivatives. Letters in Drug Design & Discovery, 8(9), 811-815. doi:10.2174/157018011797200858

Sharma, A., Robin Wilson, G., & Dubey, A. (2016). Antibacterial activity of vinyl imidazole(vi) functionalized silica polymer nanocomposites (SBA/VI) against Gram negative and Gram positive bacteria. New Journal of Chemistry, 40(1), 764-769. doi:10.1039/c5nj01536g

Gehring, J., Trepka, B., Klinkenberg, N., Bronner, H., Schleheck, D., & Polarz, S. (2016). Sunlight-Triggered Nanoparticle Synergy: Teamwork of Reactive Oxygen Species and Nitric Oxide Released from Mesoporous Organosilica with Advanced Antibacterial Activity. Journal of the American Chemical Society, 138(9), 3076-3084. doi:10.1021/jacs.5b12073

Planas, O., Bresolí-Obach, R., Nos, J., Gallavardin, T., Ruiz-González, R., Agut, M., & Nonell, S. (2015). Synthesis, Photophysical Characterization, and Photoinduced Antibacterial Activity of Methylene Blue-loaded Amino- and Mannose-Targeted Mesoporous Silica Nanoparticles. Molecules, 20(4), 6284-6298. doi:10.3390/molecules20046284

Zampini, G., Planas, O., Marmottini, F., Gulías, O., Agut, M., Nonell, S., & Latterini, L. (2017). Morphology effects on singlet oxygen production and bacterial photoinactivation efficiency by different silica-protoporphyrin IX nanocomposites. RSC Advances, 7(24), 14422-14429. doi:10.1039/c7ra00784a

Ruiz-Rico, M., Fuentes, C., Pérez-Esteve, É., Jiménez-Belenguer, A. I., Quiles, A., Marcos, M. D., … Barat, J. M. (2015). Bactericidal activity of caprylic acid entrapped in mesoporous silica nanoparticles. Food Control, 56, 77-85. doi:10.1016/j.foodcont.2015.03.016

Koneru, B., Shi, Y., Wang, Y.-C., Chavala, S., Miller, M., Holbert, B., … Di Pasqua, A. (2015). Tetracycline-Containing MCM-41 Mesoporous Silica Nanoparticles for the Treatment of Escherichia coli. Molecules, 20(11), 19690-19698. doi:10.3390/molecules201119650

Hao, N., Jayawardana, K. W., Chen, X., & Yan, M. (2015). One-Step Synthesis of Amine-Functionalized Hollow Mesoporous Silica Nanoparticles as Efficient Antibacterial and Anticancer Materials. ACS Applied Materials & Interfaces, 7(2), 1040-1045. doi:10.1021/am508219g

Indrigo, J., Hunter, R. L., & Actor, J. K. (2003). Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology, 149(8), 2049-2059. doi:10.1099/mic.0.26226-0

Hao, N., Chen, X., Jayawardana, K. W., Wu, B., Sundhoro, M., & Yan, M. (2016). Shape control of mesoporous silica nanomaterials templated with dual cationic surfactants and their antibacterial activities. Biomaterials Science, 4(1), 87-91. doi:10.1039/c5bm00197h

Wang, Y., Nor, Y. A., Song, H., Yang, Y., Xu, C., Yu, M., & Yu, C. (2016). Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. Journal of Materials Chemistry B, 4(15), 2646-2653. doi:10.1039/c6tb00053c

Chan, A. C., Bravo Cadena, M., Townley, H. E., Fricker, M. D., & Thompson, I. P. (2017). Effective delivery of volatile biocides employing mesoporous silicates for treating biofilms. Journal of The Royal Society Interface, 14(126), 20160650. doi:10.1098/rsif.2016.0650

Mudakavi, R. J., Vanamali, S., Chakravortty, D., & Raichur, A. M. (2017). Development of arginine based nanocarriers for targeting and treatment of intracellularSalmonella. RSC Advances, 7(12), 7022-7032. doi:10.1039/c6ra27868j

Trewyn, B. G., Whitman, C. M., & Lin, V. S.-Y. (2004). Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents. Nano Letters, 4(11), 2139-2143. doi:10.1021/nl048774r

Cicuéndez, M., Izquierdo-Barba, I., Portolés, M. T., & Vallet-Regí, M. (2013). Biocompatibility and levofloxacin delivery of mesoporous materials. European Journal of Pharmaceutics and Biopharmaceutics, 84(1), 115-124. doi:10.1016/j.ejpb.2012.11.029

Xia, X., Pethe, K., Kim, R., Ballell, L., Barros, D., Cechetto, J., … Garcia-Bennett, A. (2014). Encapsulation of Anti-Tuberculosis Drugs within Mesoporous Silica and Intracellular Antibacterial Activities. Nanomaterials, 4(3), 813-826. doi:10.3390/nano4030813

Mudakavi, R. J., Raichur, A. M., & Chakravortty, D. (2014). Lipid coated mesoporous silica nanoparticles as an oral delivery system for targeting and treatment of intravacuolar Salmonella infections. RSC Adv., 4(105), 61160-61166. doi:10.1039/c4ra12973c

Liu, Y., Liu, X., Xiao, Y., Chen, F., & Xiao, F. (2017). A multifunctional nanoplatform based on mesoporous silica nanoparticles for imaging-guided chemo/photodynamic synergetic therapy. RSC Advances, 7(49), 31133-31141. doi:10.1039/c7ra04549b

Anirudhan, T. S., Binusreejayan, & Jayan, P. P. (2016). Development of functionalized chitosan-coated carboxylated mesoporous silica: a dual drug carrier. Designed Monomers and Polymers, 19(5), 381-393. doi:10.1080/15685551.2016.1169372

Izquierdo-Barba, I., Vallet-Regí, M., Kupferschmidt, N., Terasaki, O., Schmidtchen, A., & Malmsten, M. (2009). Incorporation of antimicrobial compounds in mesoporous silica film monolith. Biomaterials, 30(29), 5729-5736. doi:10.1016/j.biomaterials.2009.07.003

Aguilar-Colomer, A., Doadrio, J. C., Pérez-Jorge, C., Manzano, M., Vallet-Regí, M., & Esteban, J. (2016). Antibacterial effect of antibiotic-loaded SBA-15 on biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis. The Journal of Antibiotics, 70(3), 259-263. doi:10.1038/ja.2016.154

Zhou, P., Xia, Y., Cheng, X., Wang, P., Xie, Y., & Xu, S. (2014). Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zein composite scaffolds loaded with rhBMP-2. Biomaterials, 35(38), 10033-10045. doi:10.1016/j.biomaterials.2014.09.009

Colilla, M., Martínez-Carmona, M., Sánchez-Salcedo, S., Ruiz-González, M. L., González-Calbet, J. M., & Vallet-Regí, M. (2014). A novel zwitterionic bioceramic with dual antibacterial capability. J. Mater. Chem. B, 2(34), 5639-5651. doi:10.1039/c4tb00690a

Balaure, P. C., Boarca, B., Popescu, R. C., Savu, D., Trusca, R., Vasile, B. Ștefan, … Andronescu, E. (2017). Bioactive mesoporous silica nanostructures with anti-microbial and anti-biofilm properties. International Journal of Pharmaceutics, 531(1), 35-46. doi:10.1016/j.ijpharm.2017.08.062

Michailidis, M., Sorzabal-Bellido, I., Adamidou, E. A., Diaz-Fernandez, Y. A., Aveyard, J., Wengier, R., … Shchukin, D. (2017). Modified Mesoporous Silica Nanoparticles with a Dual Synergetic Antibacterial Effect. ACS Applied Materials & Interfaces, 9(44), 38364-38372. doi:10.1021/acsami.7b14642

Chang, Z., Wang, Z., Lu, M., Li, M., Li, L., Zhang, Y., … Dong, W. (2017). Magnetic Janus nanorods for efficient capture, separation and elimination of bacteria. RSC Advances, 7(6), 3550-3553. doi:10.1039/c6ra27296g

Chen, G., Li, Z., Wang, X., Xie, L., Qi, Q., & Fang, W. (2014). Preparation of CTAB-loaded magnetic nanospheres for rapid bacterial capture and decontamination. Materials Letters, 134, 290-294. doi:10.1016/j.matlet.2014.07.100

Stanton, M. M., Park, B.-W., Vilela, D., Bente, K., Faivre, D., Sitti, M., & Sánchez, S. (2017). Magnetotactic Bacteria Powered Biohybrids TargetE. coliBiofilms. ACS Nano, 11(10), 9968-9978. doi:10.1021/acsnano.7b04128

Wan, M., Zhang, J., Wang, Q., Zhan, S., Chen, X., Mao, C., … Shen, J. (2017). In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications. ACS Applied Materials & Interfaces, 9(22), 18609-18618. doi:10.1021/acsami.7b05163

Wu, F., Xu, T., Zhao, G., Meng, S., Wan, M., Chi, B., … Shen, J. (2017). Mesoporous Silica Nanoparticles-Encapsulated Agarose and Heparin as Anticoagulant and Resisting Bacterial Adhesion Coating for Biomedical Silicone. Langmuir, 33(21), 5245-5252. doi:10.1021/acs.langmuir.7b00567

Xu, G., Shen, X., Dai, L., Ran, Q., Ma, P., & Cai, K. (2017). Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates. Materials Science and Engineering: C, 70, 386-395. doi:10.1016/j.msec.2016.08.050

Yu, J., Yang, H., Li, K., Ren, H., Lei, J., & Huang, C. (2017). Development of Epigallocatechin-3-gallate-Encapsulated Nanohydroxyapatite/Mesoporous Silica for Therapeutic Management of Dentin Surface. ACS Applied Materials & Interfaces, 9(31), 25796-25807. doi:10.1021/acsami.7b06597

Li, D., Nie, W., Chen, L., Miao, Y., Zhang, X., Chen, F., … He, C. (2017). Fabrication of curcumin-loaded mesoporous silica incorporated polyvinyl pyrrolidone nanofibers for rapid hemostasis and antibacterial treatment. RSC Advances, 7(13), 7973-7982. doi:10.1039/c6ra27319j

Hashemikia, S., Hemmatinejad, N., Ahmadi, E., & Montazer, M. (2016). Antibacterial and anti-inflammatory drug delivery properties on cotton fabric using betamethasone-loaded mesoporous silica particles stabilized with chitosan and silicone softener. Drug Delivery, 23(8), 2946-2955. doi:10.3109/10717544.2015.1132795

Zhang, J. F., Wu, R., Fan, Y., Liao, S., Wang, Y., Wen, Z. T., & Xu, X. (2014). Antibacterial Dental Composites with Chlorhexidine and Mesoporous Silica. Journal of Dental Research, 93(12), 1283-1289. doi:10.1177/0022034514555143

Rădulescu, D., Voicu, G., Oprea, A. E., Andronescu, E., Grumezescu, V., Holban, A. M., … Chifiriuc, M. C. (2016). Mesoporous silica coatings for cephalosporin active release at the bone-implant interface. Applied Surface Science, 374, 165-171. doi:10.1016/j.apsusc.2015.10.183

Perez, L. M., Lalueza, P., Monzon, M., Puertolas, J. A., Arruebo, M., & Santamaría, J. (2011). Hollow porous implants filled with mesoporous silica particles as a two-stage antibiotic-eluting device. International Journal of Pharmaceutics, 409(1-2), 1-8. doi:10.1016/j.ijpharm.2011.02.015

Ehlert, N., Badar, M., Christel, A., Lohmeier, S. J., Luessenhop, T., Stieve, M., … Behrens, P. (2011). Mesoporous silica coatings for controlled release of the antibiotic ciprofloxacin from implants. J. Mater. Chem., 21(3), 752-760. doi:10.1039/c0jm01487g

Cicuéndez, M., Doadrio, J. C., Hernández, A., Portolés, M. T., Izquierdo-Barba, I., & Vallet-Regí, M. (2018). Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. Acta Biomaterialia, 65, 450-461. doi:10.1016/j.actbio.2017.11.009

Seneviratne, C. J., Leung, K. C.-F., Wong, C.-H., Lee, S.-F., Li, X., Leung, P. C., … Jin, L. (2014). Nanoparticle-Encapsulated Chlorhexidine against Oral Bacterial Biofilms. PLoS ONE, 9(8), e103234. doi:10.1371/journal.pone.0103234

Tamanna, T., Landersdorfer, C. B., Ng, H. J., Bulitta, J. B., Wood, P., & Yu, A. (2018). Prolonged and continuous antibacterial and anti-biofilm activities of thin films embedded with gentamicin-loaded mesoporous silica nanoparticles. Applied Nanoscience, 8(6), 1471-1482. doi:10.1007/s13204-018-0807-8

Mas, N., Galiana, I., Mondragón, L., Aznar, E., Climent, E., Cabedo, N., … Amorós, P. (2013). Enhanced Efficacy and Broadening of Antibacterial Action of Drugs via the Use of Capped Mesoporous Nanoparticles. Chemistry - A European Journal, 19(34), 11167-11171. doi:10.1002/chem.201302170

Velikova, N., Mas, N., Miguel-Romero, L., Polo, L., Stolte, E., Zaccaria, E., … Wells, J. (2017). Broadening the antibacterial spectrum of histidine kinase autophosphorylation inhibitors via the use of ε-poly-L-lysine capped mesoporous silica-based nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 13(2), 569-581. doi:10.1016/j.nano.2016.09.011

Alsaiari, S. K., Hammami, M. A., Croissant, J. G., Omar, H. W., Neelakanda, P., Yapici, T., … Khashab, N. M. (2017). Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections. Advanced Healthcare Materials, 6(6), 1601135. doi:10.1002/adhm.201601135

Yan, Z., Shi, P., Ren, J., & Qu, X. (2015). A «Sense-and-Treat» Hydrogel Used for Treatment of Bacterial Infection on the Solid Matrix. Small, 11(41), 5540-5544. doi:10.1002/smll.201501958

Duan, F., Feng, X., Jin, Y., Liu, D., Yang, X., Zhou, G., … Zhang, J. (2017). Metal–carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of MRSA. Biomaterials, 144, 155-165. doi:10.1016/j.biomaterials.2017.08.024

Yu, E., Galiana, I., Martínez-Máñez, R., Stroeve, P., Marcos, M. D., Aznar, E., … Amorós, P. (2015). Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme. Colloids and Surfaces B: Biointerfaces, 135, 652-660. doi:10.1016/j.colsurfb.2015.06.048

Wu, Y., Long, Y., Li, Q.-L., Han, S., Ma, J., Yang, Y.-W., & Gao, H. (2015). Layer-by-Layer (LBL) Self-Assembled Biohybrid Nanomaterials for Efficient Antibacterial Applications. ACS Applied Materials & Interfaces, 7(31), 17255-17263. doi:10.1021/acsami.5b04216

Li, Q., Wu, Y., Lu, H., Wu, X., Chen, S., Song, N., … Gao, H. (2017). Construction of Supramolecular Nanoassembly for Responsive Bacterial Elimination and Effective Bacterial Detection. ACS Applied Materials & Interfaces, 9(11), 10180-10189. doi:10.1021/acsami.7b00873

Lee, B.-Y., Li, Z., Clemens, D. L., Dillon, B. J., Hwang, A. A., Zink, J. I., & Horwitz, M. A. (2016). Redox-Triggered Release of Moxifloxacin from Mesoporous Silica Nanoparticles Functionalized with Disulfide Snap-Tops Enhances Efficacy Against Pneumonic Tularemia in Mice. Small, 12(27), 3690-3702. doi:10.1002/smll.201600892

González, B., Colilla, M., Díez, J., Pedraza, D., Guembe, M., Izquierdo-Barba, I., & Vallet-Regí, M. (2018). Mesoporous silica nanoparticles decorated with polycationic dendrimers for infection treatment. Acta Biomaterialia, 68, 261-271. doi:10.1016/j.actbio.2017.12.041

Lara, H. H., Ayala-Núñez, N. V., Ixtepan Turrent, L. del C., & Rodríguez Padilla, C. (2009). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26(4), 615-621. doi:10.1007/s11274-009-0211-3

Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine, 3(2), 168-171. doi:10.1016/j.nano.2007.02.001

Sarkar, S., Jana, A. D., Samanta, S. K., & Mostafa, G. (2007). Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron, 26(15), 4419-4426. doi:10.1016/j.poly.2007.05.056

Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., & Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18(22), 225103. doi:10.1088/0957-4484/18/22/225103

Ren, G., Hu, D., Cheng, E. W. C., Vargas-Reus, M. A., Reip, P., & Allaker, R. P. (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587-590. doi:10.1016/j.ijantimicag.2008.12.004

MARTINEZFLORES, E., NEGRETE, J., & TORRESVILLASENOR, G. (2003). Structure and properties of Zn–Al–Cu alloy reinforced with alumina particles. Materials & Design, 24(4), 281-286. doi:10.1016/s0261-3069(03)00028-1

Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., … Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281. doi:10.1111/j.1469-0691.2011.03570.x

Matsumura, Y., Yoshikata, K., Kunisaki, S., & Tsuchido, T. (2003). Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Applied and Environmental Microbiology, 69(7), 4278-4281. doi:10.1128/aem.69.7.4278-4281.2003

Ruparelia, J. P., Chatterjee, A. K., Duttagupta, S. P., & Mukherji, S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 4(3), 707-716. doi:10.1016/j.actbio.2007.11.006

Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346-2353. doi:10.1088/0957-4484/16/10/059

Shuguang Wang, Lawson, R., Ray, P. C., & Hongtao Yu. (2011). Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicology and Industrial Health, 27(6), 547-554. doi:10.1177/0748233710393395

Santo, C. E., Taudte, N., Nies, D. H., & Grass, G. (2007). Contribution of Copper Ion Resistance to Survival of Escherichia coli on Metallic Copper Surfaces. Applied and Environmental Microbiology, 74(4), 977-986. doi:10.1128/aem.01938-07

Nathan, C., & Cunningham-Bussel, A. (2013). Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nature Reviews Immunology, 13(5), 349-361. doi:10.1038/nri3423

Soenen, S. J., Rivera-Gil, P., Montenegro, J.-M., Parak, W. J., De Smedt, S. C., & Braeckmans, K. (2011). Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 6(5), 446-465. doi:10.1016/j.nantod.2011.08.001

Pan, X., Redding, J. E., Wiley, P. A., Wen, L., McConnell, J. S., & Zhang, B. (2010). Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere, 79(1), 113-116. doi:10.1016/j.chemosphere.2009.12.056

Ashkarran, A. A., Ghavami, M., Aghaverdi, H., Stroeve, P., & Mahmoudi, M. (2012). Bacterial Effects and Protein Corona Evaluations: Crucial Ignored Factors in the Prediction of Bio-Efficacy of Various Forms of Silver Nanoparticles. Chemical Research in Toxicology, 25(6), 1231-1242. doi:10.1021/tx300083s

Fang, J., Lyon, D. Y., Wiesner, M. R., Dong, J., & Alvarez. (2007). Effect of a Fullerene Water Suspension on Bacterial Phospholipids and Membrane Phase Behavior. Environmental Science & Technology, 41(7), 2636-2642. doi:10.1021/es062181w

Simon-Deckers, A., Loo, S., Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., … Carrière, M. (2009). Size-, Composition- and Shape-Dependent Toxicological Impact of Metal Oxide Nanoparticles and Carbon Nanotubes toward Bacteria. Environmental Science & Technology, 43(21), 8423-8429. doi:10.1021/es9016975

Baek, Y.-W., & An, Y.-J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of The Total Environment, 409(8), 1603-1608. doi:10.1016/j.scitotenv.2011.01.014

Tian, Y., Qi, J., Zhang, W., Cai, Q., & Jiang, X. (2014). Facile, One-Pot Synthesis, and Antibacterial Activity of Mesoporous Silica Nanoparticles Decorated with Well-Dispersed Silver Nanoparticles. ACS Applied Materials & Interfaces, 6(15), 12038-12045. doi:10.1021/am5026424

Huang, R.-S., Hou, B.-F., Li, H.-T., Fu, X.-C., & Xie, C.-G. (2015). Preparation of silver nanoparticles supported mesoporous silica microspheres with perpendicularly aligned mesopore channels and their antibacterial activities. RSC Advances, 5(75), 61184-61190. doi:10.1039/c5ra06358b

Dong, R.-H., Jia, Y.-X., Qin, C.-C., Zhan, L., Yan, X., Cui, L., … Long, Y.-Z. (2016). In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care. Nanoscale, 8(6), 3482-3488. doi:10.1039/c5nr08367b

Xu, P., Liang, J., Cao, X., Tang, J., Gao, J., Wang, L., … Teng, Z. (2016). Facile synthesis of monodisperse of hollow mesoporous SiO2 nanoparticles and in-situ growth of Ag nanoparticles for antibacterial. Journal of Colloid and Interface Science, 474, 114-118. doi:10.1016/j.jcis.2016.04.009

Shen, Q., Wang, J., Yang, H., Ding, X., Luo, Z., Wang, H., … Cheng, D. (2014). Controllable preparation and properties of mesoporous silica hollow microspheres inside-loaded Ag nanoparticles. Journal of Non-Crystalline Solids, 391, 112-116. doi:10.1016/j.jnoncrysol.2014.03.014

Wan, X., Zhuang, L., She, B., Deng, Y., Chen, D., & Tang, J. (2016). In-situ reduction of monodisperse nanosilver on hierarchical wrinkled mesoporous silica with radial pore channels and its antibacterial performance. Materials Science and Engineering: C, 65, 323-330. doi:10.1016/j.msec.2016.04.058

Song, Y., Jiang, H., Wang, B., Kong, Y., & Chen, J. (2018). Silver-Incorporated Mussel-Inspired Polydopamine Coatings on Mesoporous Silica as an Efficient Nanocatalyst and Antimicrobial Agent. ACS Applied Materials & Interfaces, 10(2), 1792-1801. doi:10.1021/acsami.7b18136

Liong, M., France, B., Bradley, K. A., & Zink, J. I. (2009). Antimicrobial Activity of Silver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles. Advanced Materials, 21(17), 1684-1689. doi:10.1002/adma.200802646

Dong, L. H., Liu, T., Zhang, L., & Yin, Y. S. (2011). Reducing Microbiological Adhesion on Aluminum by Using Silver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles. Advanced Materials Research, 236-238, 1775-1778. doi:10.4028/www.scientific.net/amr.236-238.1775

Liu, T., Dong, Y., He, T., Guo, N., & Zhang, F. (2013). Films with nanosilvers improve biocorrosion resistance of aluminium in sea water. Surface Engineering, 30(1), 6-10. doi:10.1179/1743294413y.0000000192

Yin, B., Liu, T., Dong, L. H., Zhang, L., & Yin, Y. S. (2012). Reducing Microbially-Influenced Corrosion on Aluminum by Using Organosiloxane Sol Film with Silver Nanocrystals. Advanced Materials Research, 463-464, 1479-1483. doi:10.4028/www.scientific.net/amr.463-464.1479

Yang, H., Liu, Y., Shen, Q., Chen, L., You, W., Wang, X., & Sheng, J. (2012). Mesoporous silica microcapsule-supported Ag nanoparticles fabricated via nano-assembly and its antibacterial properties. Journal of Materials Chemistry, 22(45), 24132. doi:10.1039/c2jm35621j

Yang, H., You, W., Shen, Q., Wang, X., Sheng, J., Cheng, D., … Wu, C. (2014). Preparation of lotus-leaf-like antibacterial film based on mesoporous silica microcapsule-supported Ag nanoparticles. RSC Adv., 4(6), 2793-2796. doi:10.1039/c3ra45382k

Pandey, S., & Ramontja, J. (2016). Sodium alginate stabilized silver nanoparticles–silica nanohybrid and their antibacterial characteristics. International Journal of Biological Macromolecules, 93, 712-723. doi:10.1016/j.ijbiomac.2016.09.033

Ma, C., Wei, Q., Cao, B., Cheng, X., Tian, J., Pu, H., … Cao, L. (2017). A multifunctional bioactive material that stimulates osteogenesis and promotes the vascularization bone marrow stem cells and their resistance to bacterial infection. PLOS ONE, 12(3), e0172499. doi:10.1371/journal.pone.0172499

Ma, Z., Ji, H., Teng, Y., Dong, G., Tan, D., Guan, M., … Zhang, M. (2011). Engineering and optimisation of medically multi-functional mesoporous SiO2 fibers as effective wound dressing material. Journal of Materials Chemistry, 21(26), 9595. doi:10.1039/c1jm11115a

Naik, B., Desai, V., Kowshik, M., Prasad, V. S., Fernando, G. F., & Ghosh, N. N. (2011). Synthesis of Ag/AgCl–mesoporous silica nanocomposites using a simple aqueous solution-based chemical method and a study of their antibacterial activity on E. coli. Particuology, 9(3), 243-247. doi:10.1016/j.partic.2010.12.001

Gao, Y., Dong, Q., Lan, S., Cai, Q., Simalou, O., Zhang, S., … Dong, A. (2015). Decorating CdTe QD-Embedded Mesoporous Silica Nanospheres with Ag NPs to Prevent Bacteria Invasion for Enhanced Anticounterfeit Applications. ACS Applied Materials & Interfaces, 7(18), 10022-10033. doi:10.1021/acsami.5b02472

Carmona, D., Lalueza, P., Balas, F., Arruebo, M., & Santamaría, J. (2012). Mesoporous silica loaded with peracetic acid and silver nanoparticles as a dual-effect, highly efficient bactericidal agent. Microporous and Mesoporous Materials, 161, 84-90. doi:10.1016/j.micromeso.2012.05.012

Chang, Z., Wang, Z., Lu, M., Shao, D., Yue, J., Yang, D., … Dong, W. (2017). Janus silver mesoporous silica nanobullets with synergistic antibacterial functions. Colloids and Surfaces B: Biointerfaces, 157, 199-206. doi:10.1016/j.colsurfb.2017.05.079

Lu, M., Wang, Q., Chang, Z., Wang, Z., Zheng, X., Shao, D., … Zhou, Y. (2017). Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles. International Journal of Nanomedicine, Volume 12, 3577-3589. doi:10.2147/ijn.s133846

Saad, A., Cabet, E., Lilienbaum, A., Hamadi, S., Abderrabba, M., & Chehimi, M. M. (2017). Polypyrrole/Ag/mesoporous silica nanocomposite particles: Design by photopolymerization in aqueous medium and antibacterial activity. Journal of the Taiwan Institute of Chemical Engineers, 80, 1022-1030. doi:10.1016/j.jtice.2017.09.024

Song, Z., Ma, Y., Xia, G., Wang, Y., Kapadia, W., Sun, Z., … Huang, X. (2017). In vitro and in vivo combined antibacterial effect of levofloxacin/silver co-loaded electrospun fibrous membranes. Journal of Materials Chemistry B, 5(36), 7632-7643. doi:10.1039/c7tb01243h

Kuthati, Y., Kankala, R. K., Busa, P., Lin, S.-X., Deng, J.-P., Mou, C.-Y., & Lee, C.-H. (2017). Phototherapeutic spectrum expansion through synergistic effect of mesoporous silica trio-nanohybrids against antibiotic-resistant gram-negative bacterium. Journal of Photochemistry and Photobiology B: Biology, 169, 124-133. doi:10.1016/j.jphotobiol.2017.03.003

YOSHIMURA, M., NAMURA, S., AKAMATSU, H., & HORIO, T. (1996). Antimicrobial effects of phototherapy and photochemotherapy in vivo and in vitro. British Journal of Dermatology, 135(4), 528-532. doi:10.1046/j.1365-2133.1996.d01-1034.x

Matsunaga, T., Tomoda, R., Nakajima, T., & Wake, H. (1985). Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters, 29(1-2), 211-214. doi:10.1111/j.1574-6968.1985.tb00864.x

Kim, B., Kim, D., Cho, D., & Cho, S. (2003). Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere, 52(1), 277-281. doi:10.1016/s0045-6535(03)00051-1

Chawengkijwanich, C., & Hayata, Y. (2008). Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. International Journal of Food Microbiology, 123(3), 288-292. doi:10.1016/j.ijfoodmicro.2007.12.017

Majdalawieh, A., Kanan, M. C., El-Kadri, O., & Kanan, S. M. (2014). Recent Advances in Gold and Silver Nanoparticles: Synthesis and Applications. Journal of Nanoscience and Nanotechnology, 14(7), 4757-4780. doi:10.1166/jnn.2014.9526

Norman, R. S., Stone, J. W., Gole, A., Murphy, C. J., & Sabo-Attwood, T. L. (2008). Targeted Photothermal Lysis of the Pathogenic Bacteria,Pseudomonas aeruginosa, with Gold Nanorods. Nano Letters, 8(1), 302-306. doi:10.1021/nl0727056

Brown, A. N., Smith, K., Samuels, T. A., Lu, J., Obare, S. O., & Scott, M. E. (2012). Nanoparticles Functionalized with Ampicillin Destroy Multiple-Antibiotic-Resistant Isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and Methicillin-Resistant Staphylococcus aureus. Applied and Environmental Microbiology, 78(8), 2768-2774. doi:10.1128/aem.06513-11

Chamundeeswari, M., Sobhana, S. S. L., Jacob, J. P., Kumar, M. G., Devi, M. P., Sastry, T. P., & Mandal, A. B. (2010). Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnology and Applied Biochemistry, 55(1), 29-35. doi:10.1042/ba20090198

Zhao, Y., Tian, Y., Cui, Y., Liu, W., Ma, W., & Jiang, X. (2010). Small Molecule-Capped Gold Nanoparticles as Potent Antibacterial Agents That Target Gram-Negative Bacteria. Journal of the American Chemical Society, 132(35), 12349-12356. doi:10.1021/ja1028843

Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fiévet, F. (2006). Toxicological Impact Studies Based onEscherichiacoliBacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Letters, 6(4), 866-870. doi:10.1021/nl052326h

Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.-C., & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71(7), 1308-1316. doi:10.1016/j.chemosphere.2007.11.047

Chorianopoulos, N. G., Tsoukleris, D. S., Panagou, E. Z., Falaras, P., & Nychas, G.-J. E. (2011). Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiology, 28(1), 164-170. doi:10.1016/j.fm.2010.07.025

Díez, B., Roldán, N., Martín, A., Sotto, A., Perdigón-Melón, J. A., Arsuaga, J., & Rosal, R. (2017). Fouling and biofouling resistance of metal-doped mesostructured silica/polyethersulfone ultrafiltration membranes. Journal of Membrane Science, 526, 252-263. doi:10.1016/j.memsci.2016.12.051

Zarzuela, R., Carbú, M., Gil, M. L. A., Cantoral, J. M., & Mosquera, M. J. (2017). CuO/SiO2 nanocomposites: A multifunctional coating for application on building stone. Materials & Design, 114, 364-372. doi:10.1016/j.matdes.2016.11.009

Tao, Y., Ju, E., Ren, J., & Qu, X. (2014). Bifunctionalized Mesoporous Silica-Supported Gold Nanoparticles: Intrinsic Oxidase and Peroxidase Catalytic Activities for Antibacterial Applications. Advanced Materials, 27(6), 1097-1104. doi:10.1002/adma.201405105

Cendrowski, K. (2013). Mesoporous Silica Nanospheres Functionalized by Tio2 as a Photoactive Antibacterial Agent. Journal of Nanomedicine & Nanotechnology, 04(06). doi:10.4172/2157-7439.1000182

Cendrowski, K., Peruzynska, M., Markowska-Szczupak, A., Chen, X., Wajda, A., Lapczuk, J., … Mijowska, E. (2014). Antibacterial performance of nanocrystallined titania confined in mesoporous silica nanotubes. Biomedical Microdevices, 16(3), 449-458. doi:10.1007/s10544-014-9847-3

Rakhshaei, R., & Namazi, H. (2017). A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Materials Science and Engineering: C, 73, 456-464. doi:10.1016/j.msec.2016.12.097

Hu, J.-L., Yang, Q.-H., Lin, H., Ye, Y.-P., He, Q., Zhang, J.-N., & Qian, H.-S. (2013). Mesoporous silica nanospheres decorated with CdS nanocrystals for enhanced photocatalytic and excellent antibacterial activities. Nanoscale, 5(14), 6327. doi:10.1039/c3nr01329d

Gehring, J., Schleheck, D., Trepka, B., & Polarz, S. (2014). Mesoporous Organosilica Nanoparticles Containing Superacid and Click Functionalities Leading to Cooperativity in Biocidal Coatings. ACS Applied Materials & Interfaces, 7(1), 1021-1029. doi:10.1021/am5083057

Dai, C., Yuan, Y., Liu, C., Wei, J., Hong, H., Li, X., & Pan, X. (2009). Degradable, antibacterial silver exchanged mesoporous silica spheres for hemorrhage control. Biomaterials, 30(29), 5364-5375. doi:10.1016/j.biomaterials.2009.06.052

Wang, C., Hong, H., Lin, Z., Yuan, Y., Liu, C., Ma, X., & Cao, X. (2015). Tethering silver ions on amino-functionalized mesoporous silica for enhanced and sustained antibacterial properties. RSC Advances, 5(126), 104289-104298. doi:10.1039/c5ra22225g

Şen Karaman, D., Sarwar, S., Desai, D., Björk, E. M., Odén, M., Chakrabarti, P., … Chakraborti, S. (2016). Shape engineering boosts antibacterial activity of chitosan coated mesoporous silica nanoparticle doped with silver: a mechanistic investigation. Journal of Materials Chemistry B, 4(19), 3292-3304. doi:10.1039/c5tb02526e

Min, S.-H., Yang, J.-H., Kim, J. Y., & Kwon, Y.-U. (2010). Development of white antibacterial pigment based on silver chloride nanoparticles and mesoporous silica and its polymer composite. Microporous and Mesoporous Materials, 128(1-3), 19-25. doi:10.1016/j.micromeso.2009.07.020

Pourshahrestani, S., Zeimaran, E., Adib Kadri, N., Gargiulo, N., Samuel, S., Naveen, S. V., … Towler, M. R. (2016). Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy. Journal of Materials Chemistry B, 4(1), 71-86. doi:10.1039/c5tb02062j

Song, Y., Jiang, H., Bi, H., Zhong, G., Chen, J., Wu, Y., & Wei, W. (2018). Multifunctional Bismuth Oxychloride/Mesoporous Silica Composites for Photocatalysis, Antibacterial Test, and Simultaneous Stripping Analysis of Heavy Metals. ACS Omega, 3(1), 973-981. doi:10.1021/acsomega.7b01590

Ghosh, S., & Vandana, V. (2017). Nano-structured mesoporous silica/silver composite: Synthesis, characterization and targeted application towards water purification. Materials Research Bulletin, 88, 291-300. doi:10.1016/j.materresbull.2016.12.044

Kuthati, Y., Kankala, R. K., Lin, S.-X., Weng, C.-F., & Lee, C.-H. (2015). pH-Triggered Controllable Release of Silver–Indole-3 Acetic Acid Complexes from Mesoporous Silica Nanoparticles (IBN-4) for Effectively Killing Malignant Bacteria. Molecular Pharmaceutics, 12(7), 2289-2304. doi:10.1021/mp500836w

Chen, C.-C., Wu, H.-H., Huang, H.-Y., Liu, C.-W., & Chen, Y.-N. (2016). Synthesis of High Valence Silver-Loaded Mesoporous Silica with Strong Antibacterial Properties. International Journal of Environmental Research and Public Health, 13(1), 99. doi:10.3390/ijerph13010099

Li, X., Zuo, W., Luo, M., Shi, Z., Cui, Z., & Zhu, S. (2013). Silver chloride loaded mesoporous silica particles and their application in the antibacterial coatings on denture base. Chemical Research in Chinese Universities, 29(6), 1214-1218. doi:10.1007/s40242-013-3092-9

Rostamnia, S., Doustkhah, E., Estakhri, S., & Karimi, Z. (2016). Layer by layer growth of silver chloride nanoparticle within the pore channels of SBA-15/SO3H mesoporous silica (AgClNP/SBA-15/SO3K): Synthesis, characterization and antibacterial properties. Physica E: Low-dimensional Systems and Nanostructures, 76, 146-150. doi:10.1016/j.physe.2015.10.026

Laskowski, L., Laskowska, M., Fijalkowski, K., Piech, H., Jelonkiewicz, J., Jaskulak, M., … Dulski, M. (2017). New Class of Antimicrobial Agents: SBA-15 Silica Containing Anchored Copper Ions. Journal of Nanomaterials, 2017, 1-12. doi:10.1155/2017/1287698

Díaz-García, D., Ardiles, P., Prashar, S., Rodríguez-Diéguez, A., Páez, P., & Gómez-Ruiz, S. (2019). Preparation and Study of the Antibacterial Applications and Oxidative Stress Induction of Copper Maleamate-Functionalized Mesoporous Silica Nanoparticles. Pharmaceutics, 11(1), 30. doi:10.3390/pharmaceutics11010030

Tahmasbi, L., Sedaghat, T., Motamedi, H., & Kooti, M. (2018). Mesoporous silica nanoparticles supported copper(II) and nickel(II) Schiff base complexes: Synthesis, characterization, antibacterial activity and enzyme immobilization. Journal of Solid State Chemistry, 258, 517-525. doi:10.1016/j.jssc.2017.11.015

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem