Desde el lunes 3 y hasta el jueves 20 de marzo, RiuNet funcionará en modo de solo lectura a causa de su actualización a una nueva versión.
Mostrar el registro sencillo del ítem
dc.contributor.author | Bernardos Bau, Andrea![]() |
es_ES |
dc.contributor.author | Piacenza, E.![]() |
es_ES |
dc.contributor.author | Sancenón Galarza, Félix![]() |
es_ES |
dc.contributor.author | Hamidi, M.![]() |
es_ES |
dc.contributor.author | Maleki, A![]() |
es_ES |
dc.contributor.author | Turner, R.J.![]() |
es_ES |
dc.contributor.author | Martínez-Máñez, Ramón![]() |
es_ES |
dc.date.accessioned | 2020-04-17T12:50:57Z | |
dc.date.available | 2020-04-17T12:50:57Z | |
dc.date.issued | 2019-06 | es_ES |
dc.identifier.issn | 1613-6810 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140936 | |
dc.description | This is the peer reviewed version of the following article: Bernardos, A., Piacenza, E., Sancenón, F., Hamidi, M., Maleki, A., Turner, R. J., Martínez-Máñez, R., Mesoporous Silica-Based Materials with Bactericidal Properties. Small 2019, 15, 1900669. https://doi.org/10.1002/smll.201900669 , which has been published in final form at https://doi.org/10.1002/smll.201900669. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] Bacterial infections are the main cause of chronic infections and even mortality. In fact, due to extensive use of antibiotics and, then, emergence of antibiotic resistance, treatment of such infections by conventional antibiotics has become a major concern worldwide. One of the promising strategies to treat infection diseases is the use of nanomaterials. Among them, mesoporous silica materials (MSMs) have attracted burgeoning attention due to high surface area, tunable pore/particle size, and easy surface functionalization. This review discusses how one can exploit capacities of MSMs to design and fabricate multifunctional/controllable drug delivery systems (DDSs) to combat bacterial infections. At first, the emergency of bacterial and biofilm resistance toward conventional antimicrobials is described and then how nanoparticles exert their toxic effects upon pathogenic cells is discussed. Next, the main aspects of MSMs (e.g., physicochemical properties, multifunctionality, and biosafety) which one should consider in the design of MSM-based DDSs against bacterial infections are introduced. Finally, a comprehensive analysis of all the papers published dealing with the use of MSMs for delivery of antibacterial chemicals (antimicrobial agents functionalized/adsorbed on mesoporous silica (MS), MS-loaded with antimicrobial agents, gated MS-loaded with antimicrobial agents, MS with metal-based nanoparticles, and MS-loaded with metal ions) is provided. | es_ES |
dc.description.sponsorship | The authors thank the Spanish Government (projects MAT2015-64139-C4-1-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047 and PROMETEO/2018/024) for support. A.B. thanks the Spanish Government for her Juan de la Cierva incorporacion contract IJCI-2014-21534. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Small | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Antibiotics | es_ES |
dc.subject | Controllable drug delivery systems | es_ES |
dc.subject | Mesoporous silica materials | es_ES |
dc.subject | Nanoparticles | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Mesoporous Silica-Based Materials with Bactericidal Properties | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/smll.201900669 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IJCI-2014-21534/ES/IJCI-2014-21534/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Bernardos Bau, A.; Piacenza, E.; Sancenón Galarza, F.; Hamidi, M.; Maleki, A.; Turner, R.; Martínez-Máñez, R. (2019). Mesoporous Silica-Based Materials with Bactericidal Properties. Small. 15(24):1-34. https://doi.org/10.1002/smll.201900669 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/smll.201900669 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 34 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 24 | es_ES |
dc.relation.pasarela | S\390647 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. de, Rojo, T., … Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499-511. doi:10.1016/j.tibtech.2012.06.004 | es_ES |
dc.description.references | Von Nussbaum, F., Brands, M., Hinzen, B., Weigand, S., & Häbich, D. (2006). Antibacterial Natural Products in Medicinal Chemistry—Exodus or Revival? Angewandte Chemie International Edition, 45(31), 5072-5129. doi:10.1002/anie.200600350 | es_ES |
dc.description.references | Ramalingam, V., Rajaram, R., PremKumar, C., Santhanam, P., Dhinesh, P., Vinothkumar, S., & Kaleshkumar, K. (2013). Biosynthesis of silver nanoparticles from deep sea bacteriumPseudomonas aeruginosaJQ989348 for antimicrobial, antibiofilm, and cytotoxic activity. Journal of Basic Microbiology, 54(9), 928-936. doi:10.1002/jobm.201300514 | es_ES |
dc.description.references | Beyth, N., Houri-Haddad, Y., Domb, A., Khan, W., & Hazan, R. (2015). Alternative Antimicrobial Approach: Nano-Antimicrobial Materials. Evidence-Based Complementary and Alternative Medicine, 2015, 1-16. doi:10.1155/2015/246012 | es_ES |
dc.description.references | El Zowalaty, M., Ibrahim, N. A., Salama, M., Shameli, K., Usman, M., & Zainuddin, N. (2013). Synthesis, characterization, and antimicrobial properties of copper nanoparticles. International Journal of Nanomedicine, 4467. doi:10.2147/ijn.s50837 | es_ES |
dc.description.references | Witte, W. (2004). International dissemination of antibiotic resistant strains of bacterial pathogens. Infection, Genetics and Evolution, 4(3), 187-191. doi:10.1016/j.meegid.2003.12.005 | es_ES |
dc.description.references | Food and Agriculture Organization of the United Nations (FAO) World Organization for Animal Health (OIE) and World Health Organization (WHO) The Tripartite's Commitment Providing multi‐sectoral collaborative leadership in addressing health challenges http://www.oie.int/fileadmin/Home/eng/Media_Center/docs/pdf/Tripartite_2017.pdf(accessed: October 2017). | es_ES |
dc.description.references | Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176-182. doi:10.1016/j.tim.2006.02.006 | es_ES |
dc.description.references | Costerton, J. W., Geesey, G. G., & Cheng, K.-J. (1978). How Bacteria Stick. Scientific American, 238(1), 86-95. doi:10.1038/scientificamerican0178-86 | es_ES |
dc.description.references | Branda, S. S., Vik, Å., Friedman, L., & Kolter, R. (2005). Biofilms: the matrix revisited. Trends in Microbiology, 13(1), 20-26. doi:10.1016/j.tim.2004.11.006 | es_ES |
dc.description.references | Kolter, R., & Greenberg, E. P. (2006). The superficial life of microbes. Nature, 441(7091), 300-302. doi:10.1038/441300a | es_ES |
dc.description.references | Harrison, J., Turner, R., Marques, L., & Ceri, H. (2005). Biofilms. American Scientist, 93(6), 508. doi:10.1511/2005.56.977 | es_ES |
dc.description.references | Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623-633. doi:10.1038/nrmicro2415 | es_ES |
dc.description.references | Flemming, H.-C., Neu, T. R., & Wozniak, D. J. (2007). The EPS Matrix: The «House of Biofilm Cells». Journal of Bacteriology, 189(22), 7945-7947. doi:10.1128/jb.00858-07 | es_ES |
dc.description.references | Harrison, J. J., Ceri, H., & Turner, R. J. (2007). Multimetal resistance and tolerance in microbial biofilms. Nature Reviews Microbiology, 5(12), 928-938. doi:10.1038/nrmicro1774 | es_ES |
dc.description.references | Hobby, G. L., Meyer, K., & Chaffee, E. (1942). Observations on the Mechanism of Action of Penicillin. Experimental Biology and Medicine, 50(2), 281-285. doi:10.3181/00379727-50-13773 | es_ES |
dc.description.references | Bigger, J. (1944). TREATMENT OF STAPHYLOCOCCAL INFECTIONS WITH PENICILLIN BY INTERMITTENT STERILISATION. The Lancet, 244(6320), 497-500. doi:10.1016/s0140-6736(00)74210-3 | es_ES |
dc.description.references | Lewis, K. (2010). Persister Cells. Annual Review of Microbiology, 64(1), 357-372. doi:10.1146/annurev.micro.112408.134306 | es_ES |
dc.description.references | Harrison, J. J., Ceri, H., Roper, N. J., Badry, E. A., Sproule, K. M., & Turner, R. J. (2005). Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology, 151(10), 3181-3195. doi:10.1099/mic.0.27794-0 | es_ES |
dc.description.references | Workentine, M. L., Harrison, J. J., Weljie, A. M., Tran, V. A., Stenroos, P. U., Tremaroli, V., … Turner, R. J. (2010). Phenotypic and metabolic profiling of colony morphology variants evolved fromPseudomonas fluorescensbiofilms. Environmental Microbiology. doi:10.1111/j.1462-2920.2010.02185.x | es_ES |
dc.description.references | Harrison, J. J., Turner, R. J., & Ceri, H. (2005). BMC Microbiology, 5(1), 53. doi:10.1186/1471-2180-5-53 | es_ES |
dc.description.references | Neut, D., C Van Der Mei, H., K Bulstra, S., & J Busscher, H. (2007). The role of small-colony variants in failure to diagnose and treat biofilm infections in orthopedics. Acta Orthopaedica, 78(3), 299-308. doi:10.1080/17453670710013843 | es_ES |
dc.description.references | Singh, R., Ray, P., Das, A., & Sharma, M. (2009). Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. Journal of Medical Microbiology, 58(8), 1067-1073. doi:10.1099/jmm.0.009720-0 | es_ES |
dc.description.references | Piacenza, E., Presentato, A., Zonaro, E., Lemire, J. A., Demeter, M., Vallini, G., … Lampis, S. (2017). Antimicrobial activity of biogenically produced spherical Se-nanomaterials embedded in organic material againstPseudomonas aeruginosaand Staphylococcus aureusstrains on hydroxyapatite-coated surfaces. Microbial Biotechnology, 10(4), 804-818. doi:10.1111/1751-7915.12700 | es_ES |
dc.description.references | Donlan, R. M. (2016). Microbial Biofilms, Second Edition. Emerging Infectious Diseases, 22(6), 1142-1142. doi:10.3201/eid2206.160282 | es_ES |
dc.description.references | Donlan, R. M. (2000). Role of Biofilms in Antimicrobial Resistance. ASAIO Journal, 46(6), S47-S52. doi:10.1097/00002480-200011000-00037 | es_ES |
dc.description.references | APPENZELLER, T. (1991). The Man Who Dared to Think Small. Science, 254(5036), 1300-1300. doi:10.1126/science.254.5036.1300 | es_ES |
dc.description.references | Gatoo, M. A., Naseem, S., Arfat, M. Y., Mahmood Dar, A., Qasim, K., & Zubair, S. (2014). Physicochemical Properties of Nanomaterials: Implication in Associated Toxic Manifestations. BioMed Research International, 2014, 1-8. doi:10.1155/2014/498420 | es_ES |
dc.description.references | Parak, W. J., Gerion, D., Pellegrino, T., Zanchet, D., Micheel, C., Williams, S. C., … Alivisatos, A. P. (2003). Biological applications of colloidal nanocrystals. Nanotechnology, 14(7), R15-R27. doi:10.1088/0957-4484/14/7/201 | es_ES |
dc.description.references | Anderson, E. B., & Long, T. E. (2010). Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer, 51(12), 2447-2454. doi:10.1016/j.polymer.2010.02.006 | es_ES |
dc.description.references | Muñoz-Bonilla, A., & Fernández-García, M. (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, 37(2), 281-339. doi:10.1016/j.progpolymsci.2011.08.005 | es_ES |
dc.description.references | Sauvet, G., Fortuniak, W., Kazmierski, K., & Chojnowski, J. (2003). Amphiphilic block and statistical siloxane copolymers with antimicrobial activity. Journal of Polymer Science Part A: Polymer Chemistry, 41(19), 2939-2948. doi:10.1002/pola.10895 | es_ES |
dc.description.references | Chung, D., Papadakis, S. E., & Yam, K. L. (2003). Evaluation of a polymer coating containing triclosan as the antimicrobial layer for packaging materials. International Journal of Food Science and Technology, 38(2), 165-169. doi:10.1046/j.1365-2621.2003.00657.x | es_ES |
dc.description.references | Lee, D.-S., Woo, J.-Y., Ahn, C.-B., & Je, J.-Y. (2014). Chitosan–hydroxycinnamic acid conjugates: Preparation, antioxidant and antimicrobial activity. Food Chemistry, 148, 97-104. doi:10.1016/j.foodchem.2013.10.019 | es_ES |
dc.description.references | Loomba, L., & Scarabelli, T. (2013). Metallic nanoparticles and their medicinal potential. Part I: gold and silver colloids. Therapeutic Delivery, 4(7), 859-873. doi:10.4155/tde.13.55 | es_ES |
dc.description.references | Emerich, D. F. (2005). Nanomedicine – prospective therapeutic and diagnostic applications. Expert Opinion on Biological Therapy, 5(1), 1-5. doi:10.1517/14712598.5.1.1 | es_ES |
dc.description.references | Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76-83. doi:10.1016/j.biotechadv.2008.09.002 | es_ES |
dc.description.references | Chatterjee, S., Bandyopadhyay, A., & Sarkar, K. (2011). Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. Journal of Nanobiotechnology, 9(1), 34. doi:10.1186/1477-3155-9-34 | es_ES |
dc.description.references | Allahverdiyev, A. M., Abamor, E. S., Bagirova, M., & Rafailovich, M. (2011). Antimicrobial effects of TiO2and Ag2O nanoparticles against drug-resistant bacteria andleishmaniaparasites. Future Microbiology, 6(8), 933-940. doi:10.2217/fmb.11.78 | es_ES |
dc.description.references | Esteban-Tejeda, L., Malpartida, F., Esteban-Cubillo, A., Pecharromán, C., & Moya, J. S. (2009). Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology, 20(50), 505701. doi:10.1088/0957-4484/20/50/505701 | es_ES |
dc.description.references | Palanikumar, L., Balachandran, C., & Ramasamy, S. N. (2014). Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnology, 8(2), 111-117. doi:10.1049/iet-nbt.2012.0008 | es_ES |
dc.description.references | Yanagisawa, T., Shimizu, T., Kuroda, K., & Kato, C. (1990). The Preparation of Alkyltriinethylaininonium–Kaneinite Complexes and Their Conversion to Microporous Materials. Bulletin of the Chemical Society of Japan, 63(4), 988-992. doi:10.1246/bcsj.63.988 | es_ES |
dc.description.references | Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020 | es_ES |
dc.description.references | Li, W., Liu, J., & Zhao, D. (2016). Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 1(6). doi:10.1038/natrevmats.2016.23 | es_ES |
dc.description.references | Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t | es_ES |
dc.description.references | SLOWING, I., VIVEROESCOTO, J., WU, C., & LIN, V. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers☆. Advanced Drug Delivery Reviews, 60(11), 1278-1288. doi:10.1016/j.addr.2008.03.012 | es_ES |
dc.description.references | Colilla, M., González, B., & Vallet-Regí, M. (2013). Mesoporous silicananoparticles for the design of smart delivery nanodevices. Biomater. Sci., 1(2), 114-134. doi:10.1039/c2bm00085g | es_ES |
dc.description.references | Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n | es_ES |
dc.description.references | Chen, Y., Chen, H., & Shi, J. (2013). In Vivo Bio-Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles. Advanced Materials, 25(23), 3144-3176. doi:10.1002/adma.201205292 | es_ES |
dc.description.references | Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j | es_ES |
dc.description.references | Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862. doi:10.1039/c3cs35405a | es_ES |
dc.description.references | Hao, N., Li, L., & Tang, F. (2016). Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews, 62(2), 57-77. doi:10.1080/09506608.2016.1190118 | es_ES |
dc.description.references | Asefa, T., & Tao, Z. (2012). Biocompatibility of Mesoporous Silica Nanoparticles. Chemical Research in Toxicology, 25(11), 2265-2284. doi:10.1021/tx300166u | es_ES |
dc.description.references | Florek, J., Caillard, R., & Kleitz, F. (2017). Evaluation of mesoporous silica nanoparticles for oral drug delivery – current status and perspective of MSNs drug carriers. Nanoscale, 9(40), 15252-15277. doi:10.1039/c7nr05762h | es_ES |
dc.description.references | Maleki, A., Kettiger, H., Schoubben, A., Rosenholm, J. M., Ambrogi, V., & Hamidi, M. (2017). Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. Journal of Controlled Release, 262, 329-347. doi:10.1016/j.jconrel.2017.07.047 | es_ES |
dc.description.references | Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g | es_ES |
dc.description.references | Rosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges. Nanoscale, 2(10), 1870. doi:10.1039/c0nr00156b | es_ES |
dc.description.references | Song, Y., Li, Y., Xu, Q., & Liu, Z. (2016). Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. International Journal of Nanomedicine, Volume 12, 87-110. doi:10.2147/ijn.s117495 | es_ES |
dc.description.references | Moreira, A. F., Dias, D. R., & Correia, I. J. (2016). Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous and Mesoporous Materials, 236, 141-157. doi:10.1016/j.micromeso.2016.08.038 | es_ES |
dc.description.references | Baeza, A., Colilla, M., & Vallet-Regí, M. (2014). Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opinion on Drug Delivery, 12(2), 319-337. doi:10.1517/17425247.2014.953051 | es_ES |
dc.description.references | Wen, J., Yang, K., Liu, F., Li, H., Xu, Y., & Sun, S. (2017). Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chemical Society Reviews, 46(19), 6024-6045. doi:10.1039/c7cs00219j | es_ES |
dc.description.references | Niedermayer, S., Weiss, V., Herrmann, A., Schmidt, A., Datz, S., Müller, K., … Bräuchle, C. (2015). Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery. Nanoscale, 7(17), 7953-7964. doi:10.1039/c4nr07245f | es_ES |
dc.description.references | Yang, K., Luo, H., Zeng, M., Jiang, Y., Li, J., & Fu, X. (2015). Intracellular pH-Triggered, Targeted Drug Delivery to Cancer Cells by Multifunctional Envelope-Type Mesoporous Silica Nanocontainers. ACS Applied Materials & Interfaces, 7(31), 17399-17407. doi:10.1021/acsami.5b04684 | es_ES |
dc.description.references | Lin, D., Cheng, Q., Jiang, Q., Huang, Y., Yang, Z., Han, S., … Dong, A. (2013). Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo. Nanoscale, 5(10), 4291. doi:10.1039/c3nr00294b | es_ES |
dc.description.references | Tan, L., Yang, M.-Y., Wu, H.-X., Tang, Z.-W., Xiao, J.-Y., Liu, C.-J., & Zhuo, R.-X. (2015). Glucose- and pH-Responsive Nanogated Ensemble Based on Polymeric Network Capped Mesoporous Silica. ACS Applied Materials & Interfaces, 7(11), 6310-6316. doi:10.1021/acsami.5b00631 | es_ES |
dc.description.references | Díez, P., Sánchez, A., Gamella, M., Martínez-Ruíz, P., Aznar, E., de la Torre, C., … Pingarrón, J. M. (2014). Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. Journal of the American Chemical Society, 136(25), 9116-9123. doi:10.1021/ja503578b | es_ES |
dc.description.references | Guardado-Alvarez, T. M., Sudha Devi, L., Russell, M. M., Schwartz, B. J., & Zink, J. I. (2013). Activation of Snap-Top Capped Mesoporous Silica Nanocontainers Using Two Near-Infrared Photons. Journal of the American Chemical Society, 135(38), 14000-14003. doi:10.1021/ja407331n | es_ES |
dc.description.references | Chen, T., Yang, N., & Fu, J. (2013). Controlled release of cargo molecules from hollow mesoporous silica nanoparticles based on acid and base dual-responsive cucurbit[7]uril pseudorotaxanes. Chemical Communications, 49(58), 6555. doi:10.1039/c3cc43221a | es_ES |
dc.description.references | Huang, X., & Du, X. (2014). Pillar[6]arene-Valved Mesoporous Silica Nanovehicles for Multiresponsive Controlled Release. ACS Applied Materials & Interfaces, 6(22), 20430-20436. doi:10.1021/am506004q | es_ES |
dc.description.references | Sun, X., Zhao, Y., Lin, V. S.-Y., Slowing, I. I., & Trewyn, B. G. (2011). Luciferase and Luciferin Co-immobilized Mesoporous Silica Nanoparticle Materials for Intracellular Biocatalysis. Journal of the American Chemical Society, 133(46), 18554-18557. doi:10.1021/ja2080168 | es_ES |
dc.description.references | Muhammad, F., Wang, A., Guo, M., Zhao, J., Qi, W., Yingjie, G., … Zhu, G. (2013). pH Dictates the Release of Hydrophobic Drug Cocktail from Mesoporous Nanoarchitecture. ACS Applied Materials & Interfaces, 5(22), 11828-11835. doi:10.1021/am4035027 | es_ES |
dc.description.references | Huang, S., Song, L., Xiao, Z., Hu, Y., Peng, M., Li, J., … Yuan, C. (2016). Graphene quantum dot-decorated mesoporous silica nanoparticles for high aspirin loading capacity and its pH-triggered release. Analytical Methods, 8(12), 2561-2567. doi:10.1039/c5ay03176a | es_ES |
dc.description.references | Liu, C., Zheng, J., Deng, L., Ma, C., Li, J., Li, Y., … Yang, R. (2015). Targeted Intracellular Controlled Drug Delivery and Tumor Therapy through in Situ Forming Ag Nanogates on Mesoporous Silica Nanocontainers. ACS Applied Materials & Interfaces, 7(22), 11930-11938. doi:10.1021/acsami.5b01787 | es_ES |
dc.description.references | Wen, J., Yang, K., Xu, Y., Li, H., Liu, F., & Sun, S. (2016). Construction of A Triple-Stimuli-Responsive System Based on Cerium Oxide Coated Mesoporous Silica Nanoparticles. Scientific Reports, 6(1). doi:10.1038/srep38931 | es_ES |
dc.description.references | Meng, H.-M., Lu, L., Zhao, X.-H., Chen, Z., Zhao, Z., Yang, C., … Tan, W. (2015). Multiple Functional Nanoprobe for Contrast-Enhanced Bimodal Cellular Imaging and Targeted Therapy. Analytical Chemistry, 87(8), 4448-4454. doi:10.1021/acs.analchem.5b00337 | es_ES |
dc.description.references | He, D., Li, X., He, X., Wang, K., Tang, J., Yang, X., … Zou, Z. (2015). Noncovalent assembly of reduced graphene oxide and alkyl-grafted mesoporous silica: an effective drug carrier for near-infrared light-responsive controlled drug release. Journal of Materials Chemistry B, 3(27), 5588-5594. doi:10.1039/c5tb00581g | es_ES |
dc.description.references | De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g | es_ES |
dc.description.references | De la Torre, C., Mondragón, L., Coll, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Orzáez, M. (2014). Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 20(47), 15309-15314. doi:10.1002/chem.201404382 | es_ES |
dc.description.references | Bhat, R., Ribes, À., Mas, N., Aznar, E., Sancenón, F., Marcos, M. D., … Martínez-Máñez, R. (2016). Thrombin-Responsive Gated Silica Mesoporous Nanoparticles As Coagulation Regulators. Langmuir, 32(5), 1195-1200. doi:10.1021/acs.langmuir.5b04038 | es_ES |
dc.description.references | Li, X.-L., Hao, N., Chen, H.-Y., & Xu, J.-J. (2014). Tumor-Marker-Mediated «on-Demand» Drug Release and Real-Time Monitoring System Based on Multifunctional Mesoporous Silica Nanoparticles. Analytical Chemistry, 86(20), 10239-10245. doi:10.1021/ac502553u | es_ES |
dc.description.references | Chang, Y.-T., Liao, P.-Y., Sheu, H.-S., Tseng, Y.-J., Cheng, F.-Y., & Yeh, C.-S. (2012). Near-Infrared Light-Responsive Intracellular Drug and siRNA Release Using Au Nanoensembles with Oligonucleotide-Capped Silica Shell. Advanced Materials, 24(25), 3309-3314. doi:10.1002/adma.201200785 | es_ES |
dc.description.references | Zhou, S., Du, X., Cui, F., & Zhang, X. (2013). Multi-Responsive and Logic Controlled Release of DNA-Gated Mesoporous Silica Vehicles Functionalized with Intercalators for Multiple Delivery. Small, 10(5), 980-988. doi:10.1002/smll.201302312 | es_ES |
dc.description.references | Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062b | es_ES |
dc.description.references | Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d | es_ES |
dc.description.references | Hao, N., Chen, X., Jeon, S., & Yan, M. (2015). Carbohydrate-Conjugated Hollow Oblate Mesoporous Silica Nanoparticles as Nanoantibiotics to Target Mycobacteria. Advanced Healthcare Materials, 4(18), 2797-2801. doi:10.1002/adhm.201500491 | es_ES |
dc.description.references | Ruehle, B., Clemens, D. L., Lee, B.-Y., Horwitz, M. A., & Zink, J. I. (2017). A Pathogen-Specific Cargo Delivery Platform Based on Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 139(19), 6663-6668. doi:10.1021/jacs.7b01278 | es_ES |
dc.description.references | Díez, P., Sánchez, A., Torre, C. de la, Gamella, M., Martínez-Ruíz, P., Aznar, E., … Villalonga, R. (2016). Neoglycoenzyme-Gated Mesoporous Silica Nanoparticles: Toward the Design of Nanodevices for Pulsatile Programmed Sequential Delivery. ACS Applied Materials & Interfaces, 8(12), 7657-7665. doi:10.1021/acsami.5b12645 | es_ES |
dc.description.references | Liu, J., Zhang, B., Luo, Z., Ding, X., Li, J., Dai, L., … Cai, K. (2015). Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Nanoscale, 7(8), 3614-3626. doi:10.1039/c5nr00072f | es_ES |
dc.description.references | Zhou, J., Hao, N., De Zoyza, T., Yan, M., & Ramström, O. (2015). Lectin-gated, mesoporous, photofunctionalized glyconanoparticles for glutathione-responsive drug delivery. Chemical Communications, 51(48), 9833-9836. doi:10.1039/c5cc02907d | es_ES |
dc.description.references | Pascual, L., Cerqueira-Coutinho, C., García-Fernández, A., de Luis, B., Bernardes, E. S., Albernaz, M. S., … Sancenón, F. (2017). MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Nanomedicine: Nanotechnology, Biology and Medicine, 13(8), 2495-2505. doi:10.1016/j.nano.2017.08.006 | es_ES |
dc.description.references | Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362 | es_ES |
dc.description.references | Zhao, Z., Meng, H., Wang, N., Donovan, M. J., Fu, T., You, M., … Tan, W. (2013). A Controlled-Release Nanocarrier with Extracellular pH Value Driven Tumor Targeting and Translocation for Drug Delivery. Angewandte Chemie International Edition, 52(29), 7487-7491. doi:10.1002/anie.201302557 | es_ES |
dc.description.references | Paris, J. L., Cabañas, M. V., Manzano, M., & Vallet-Regí, M. (2015). Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers. ACS Nano, 9(11), 11023-11033. doi:10.1021/acsnano.5b04378 | es_ES |
dc.description.references | Baeza, A., Guisasola, E., Ruiz-Hernández, E., & Vallet-Regí, M. (2012). Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials, 24(3), 517-524. doi:10.1021/cm203000u | es_ES |
dc.description.references | Cauda, V., Engelke, H., Sauer, A., Arcizet, D., Rädler, J., & Bein, T. (2010). Colchicine-Loaded Lipid Bilayer-Coated 50 nm Mesoporous Nanoparticles Efficiently Induce Microtubule Depolymerization upon Cell Uptake. Nano Letters, 10(7), 2484-2492. doi:10.1021/nl100991w | es_ES |
dc.description.references | Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456d | es_ES |
dc.description.references | Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie International Edition, 50(9), 2138-2140. doi:10.1002/anie.201004133 | es_ES |
dc.description.references | Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 | es_ES |
dc.description.references | Pascual, L., Sayed, S. E., Martínez-Máñez, R., Costero, A. M., Gil, S., Gaviña, P., & Sancenón, F. (2016). Acetylcholinesterase-Capped Mesoporous Silica Nanoparticles That Open in the Presence of Diisopropylfluorophosphate (a Sarin or Soman Simulant). Organic Letters, 18(21), 5548-5551. doi:10.1021/acs.orglett.6b02793 | es_ES |
dc.description.references | Ultimo, A., Giménez, C., Bartovsky, P., Aznar, E., Sancenón, F., Marcos, M. D., … Murguía, J. R. (2016). Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal, 22(5), 1582-1586. doi:10.1002/chem.201504629 | es_ES |
dc.description.references | Lozano-Torres, B., Pascual, L., Bernardos, A., Marcos, M. D., Jeppesen, J. O., Salinas, Y., … Sancenón, F. (2017). Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chemical Communications, 53(25), 3559-3562. doi:10.1039/c7cc00186j | es_ES |
dc.description.references | Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511 | es_ES |
dc.description.references | Ribes, À., Aznar, E., Bernardos, A., Marcos, M. D., Amorós, P., Martínez-Máñez, R., & Sancenón, F. (2017). Fluorogenic Sensing of Carcinogenic Bisphenol A using Aptamer-Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 23(36), 8581-8584. doi:10.1002/chem.201701024 | es_ES |
dc.description.references | Oroval, M., Díez, P., Aznar, E., Coll, C., Marcos, M. D., Sancenón, F., … Martínez-Máñez, R. (2016). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 23(6), 1353-1360. doi:10.1002/chem.201604104 | es_ES |
dc.description.references | De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ -Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C 9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161 | es_ES |
dc.description.references | Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2018). Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 281, 58-69. doi:10.1016/j.jconrel.2018.05.007 | es_ES |
dc.description.references | García-Fernández, A., García-Laínez, G., Ferrándiz, M. L., Aznar, E., Sancenón, F., Alcaraz, M. J., … Orzáez, M. (2017). Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 248, 60-70. doi:10.1016/j.jconrel.2017.01.002 | es_ES |
dc.description.references | Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 | es_ES |
dc.description.references | De la Torre, C., Mondragón, L., Coll, C., García-Fernández, A., Sancenón, F., Martínez-Máñez, R., … Orzáez, M. (2015). Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 21(44), 15506-15510. doi:10.1002/chem.201502413 | es_ES |
dc.description.references | De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822 | es_ES |
dc.description.references | Yang, Y., & Yu, C. (2016). Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 317-332. doi:10.1016/j.nano.2015.10.018 | es_ES |
dc.description.references | Azzopardi, E. A., Ferguson, E. L., & Thomas, D. W. (2012). The enhanced permeability retention effect: a new paradigm for drug targeting in infection. Journal of Antimicrobial Chemotherapy, 68(2), 257-274. doi:10.1093/jac/dks379 | es_ES |
dc.description.references | Benoit, D. S., & Koo, H. (2016). Targeted, triggered drug delivery to tumor and biofilm microenvironments. Nanomedicine, 11(8), 873-879. doi:10.2217/nnm-2016-0014 | es_ES |
dc.description.references | Peulen, T.-O., & Wilkinson, K. J. (2011). Diffusion of Nanoparticles in a Biofilm. Environmental Science & Technology, 45(8), 3367-3373. doi:10.1021/es103450g | es_ES |
dc.description.references | Hidalgo, G., Burns, A., Herz, E., Hay, A. G., Houston, P. L., Wiesner, U., & Lion, L. W. (2009). Functional Tomographic Fluorescence Imaging of pH Microenvironments in Microbial Biofilms by Use of Silica Nanoparticle Sensors. Applied and Environmental Microbiology, 75(23), 7426-7435. doi:10.1128/aem.01220-09 | es_ES |
dc.description.references | Li, X., Yeh, Y.-C., Giri, K., Mout, R., Landis, R. F., Prakash, Y. S., & Rotello, V. M. (2015). Control of nanoparticle penetration into biofilms through surface design. Chemical Communications, 51(2), 282-285. doi:10.1039/c4cc07737g | es_ES |
dc.description.references | Duncan, B., Li, X., Landis, R. F., Kim, S. T., Gupta, A., Wang, L.-S., … Rotello, V. M. (2015). Nanoparticle-Stabilized Capsules for the Treatment of Bacterial Biofilms. ACS Nano, 9(8), 7775-7782. doi:10.1021/acsnano.5b01696 | es_ES |
dc.description.references | Zhou, J., Jayawardana, K. W., Kong, N., Ren, Y., Hao, N., Yan, M., & Ramström, O. (2015). Trehalose-Conjugated, Photofunctionalized Mesoporous Silica Nanoparticles for Efficient Delivery of Isoniazid into Mycobacteria. ACS Biomaterials Science & Engineering, 1(12), 1250-1255. doi:10.1021/acsbiomaterials.5b00274 | es_ES |
dc.description.references | Jayawardana, K. W., Jayawardena, H. S. N., Wijesundera, S. A., De Zoysa, T., Sundhoro, M., & Yan, M. (2015). Selective targeting of Mycobacterium smegmatis with trehalose-functionalized nanoparticles. Chemical Communications, 51(60), 12028-12031. doi:10.1039/c5cc04251h | es_ES |
dc.description.references | Pelgrift, R. Y., & Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65(13-14), 1803-1815. doi:10.1016/j.addr.2013.07.011 | es_ES |
dc.description.references | Lim, W. Q., Phua, S. Z. F., Xu, H. V., Sreejith, S., & Zhao, Y. (2016). Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy. Nanoscale, 8(25), 12510-12519. doi:10.1039/c5nr07853a | es_ES |
dc.description.references | Wang, Y., & Gu, H. (2014). Core-Shell-Type Magnetic Mesoporous Silica Nanocomposites for Bioimaging and Therapeutic Agent Delivery. Advanced Materials, 27(3), 576-585. doi:10.1002/adma.201401124 | es_ES |
dc.description.references | Wang, Y., Ding, X., Chen, Y., Guo, M., Zhang, Y., Guo, X., & Gu, H. (2016). Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials, 101, 207-216. doi:10.1016/j.biomaterials.2016.06.004 | es_ES |
dc.description.references | Jiang, Z., Dong, B., Chen, B., Wang, J., Xu, L., Zhang, S., & Song, H. (2012). Multifunctional Au@mSiO2/Rhodamine B Isothiocyanate Nanocomposites: Cell Imaging, Photocontrolled Drug Release, and Photothermal Therapy for Cancer Cells. Small, 9(4), 604-612. doi:10.1002/smll.201201558 | es_ES |
dc.description.references | Liu, J.-N., Bu, W.-B., & Shi, J.-L. (2015). Silica Coated Upconversion Nanoparticles: A Versatile Platform for the Development of Efficient Theranostics. Accounts of Chemical Research, 48(7), 1797-1805. doi:10.1021/acs.accounts.5b00078 | es_ES |
dc.description.references | Idris, N. M., Gnanasammandhan, M. K., Zhang, J., Ho, P. C., Mahendran, R., & Zhang, Y. (2012). In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature Medicine, 18(10), 1580-1585. doi:10.1038/nm.2933 | es_ES |
dc.description.references | Croissant, J. G., Fatieiev, Y., & Khashab, N. M. (2017). Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Advanced Materials, 29(9), 1604634. doi:10.1002/adma.201604634 | es_ES |
dc.description.references | Huang, P., Chen, Y., Lin, H., Yu, L., Zhang, L., Wang, L., … Shi, J. (2017). Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality. Biomaterials, 125, 23-37. doi:10.1016/j.biomaterials.2017.02.018 | es_ES |
dc.description.references | Chen, Y., Meng, Q., Wu, M., Wang, S., Xu, P., Chen, H., … Shi, J. (2014). Hollow Mesoporous Organosilica Nanoparticles: A Generic Intelligent Framework-Hybridization Approach for Biomedicine. Journal of the American Chemical Society, 136(46), 16326-16334. doi:10.1021/ja508721y | es_ES |
dc.description.references | Wang, L., Huo, M., Chen, Y., & Shi, J. (2017). Coordination-Accelerated «Iron Extraction» Enables Fast Biodegradation of Mesoporous Silica-Based Hollow Nanoparticles. Advanced Healthcare Materials, 6(22), 1700720. doi:10.1002/adhm.201700720 | es_ES |
dc.description.references | Hao, X., Hu, X., Zhang, C., Chen, S., Li, Z., Yang, X., … Zhang, J. (2015). Hybrid Mesoporous Silica-Based Drug Carrier Nanostructures with Improved Degradability by Hydroxyapatite. ACS Nano, 9(10), 9614-9625. doi:10.1021/nn507485j | es_ES |
dc.description.references | Yu, L., Chen, Y., Wu, M., Cai, X., Yao, H., Zhang, L., … Shi, J. (2016). «Manganese Extraction» Strategy Enables Tumor-Sensitive Biodegradability and Theranostics of Nanoparticles. Journal of the American Chemical Society, 138(31), 9881-9894. doi:10.1021/jacs.6b04299 | es_ES |
dc.description.references | Cauda, V., Schlossbauer, A., & Bein, T. (2010). Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous and Mesoporous Materials, 132(1-2), 60-71. doi:10.1016/j.micromeso.2009.11.015 | es_ES |
dc.description.references | Acosta, C., Barat, J. M., Martínez-Máñez, R., Sancenón, F., Llopis, S., González, N., … Martorell, P. (2018). Toxicological assessment of mesoporous silica particles in the nematode Caenorhabditis elegans. Environmental Research, 166, 61-70. doi:10.1016/j.envres.2018.05.018 | es_ES |
dc.description.references | Cauda, V., Argyo, C., & Bein, T. (2010). Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. Journal of Materials Chemistry, 20(39), 8693. doi:10.1039/c0jm01390k | es_ES |
dc.description.references | He, Q., Shi, J., Zhu, M., Chen, Y., & Chen, F. (2010). The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous and Mesoporous Materials, 131(1-3), 314-320. doi:10.1016/j.micromeso.2010.01.009 | es_ES |
dc.description.references | Shen, D., Yang, J., Li, X., Zhou, L., Zhang, R., Li, W., … Zhao, D. (2014). Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres. Nano Letters, 14(2), 923-932. doi:10.1021/nl404316v | es_ES |
dc.description.references | Qi, G., Li, L., Yu, F., & Wang, H. (2013). Vancomycin-Modified Mesoporous Silica Nanoparticles for Selective Recognition and Killing of Pathogenic Gram-Positive Bacteria Over Macrophage-Like Cells. ACS Applied Materials & Interfaces, 5(21), 10874-10881. doi:10.1021/am403940d | es_ES |
dc.description.references | Ruiz-Rico, M., Pérez-Esteve, É., Bernardos, A., Sancenón, F., Martínez-Máñez, R., Marcos, M. D., & Barat, J. M. (2017). Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry, 233, 228-236. doi:10.1016/j.foodchem.2017.04.118 | es_ES |
dc.description.references | Villegas, M., Garcia-Uriostegui, L., Rodríguez, O., Izquierdo-Barba, I., Salinas, A., Toriz, G., … Delgado, E. (2017). Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial. Bioengineering, 4(4), 80. doi:10.3390/bioengineering4040080 | es_ES |
dc.description.references | Pędziwiatr-Werbicka, E., Miłowska, K., Podlas, M., Marcinkowska, M., Ferenc, M., Brahmi, Y., … El Kadib, A. (2014). Oleochemical-Tethered SBA-15-Type Silicates with Tunable Nanoscopic Order, Carboxylic Surface, and Hydrophobic Framework: Cellular Toxicity, Hemolysis, and Antibacterial Activity. Chemistry - A European Journal, 20(31), 9596-9606. doi:10.1002/chem.201402583 | es_ES |
dc.description.references | Ferenc, M., Katir, N., Milowska, K., Bousmina, M., Brahmi, Y., Felczak, A., … El Kadib, A. (2016). Impact of mesoporous silica surface functionalization on human serum albumin interaction, cytotoxicity and antibacterial activity. Microporous and Mesoporous Materials, 231, 47-56. doi:10.1016/j.micromeso.2016.05.012 | es_ES |
dc.description.references | Li, L., & Wang, H. (2013). Enzyme-Coated Mesoporous Silica Nanoparticles as Efficient Antibacterial Agents In Vivo. Advanced Healthcare Materials, 2(10), 1351-1360. doi:10.1002/adhm.201300051 | es_ES |
dc.description.references | Bastarrachea, L. J., & Goddard, J. M. (2015). Antimicrobial Coatings with Dual Cationic andN-Halamine Character: Characterization and Biocidal Efficacy. Journal of Agricultural and Food Chemistry, 63(16), 4243-4251. doi:10.1021/acs.jafc.5b00445 | es_ES |
dc.description.references | Xu, J., Zhang, Y., Zhao, Y., & Zou, X. (2017). Antibacterial activity of N-halamine decorated mesoporous silica nanoparticles. Journal of Physics and Chemistry of Solids, 108, 21-24. doi:10.1016/j.jpcs.2017.04.008 | es_ES |
dc.description.references | Wang, Y., Li, L., Liu, Y., Ren, X., & Liang, J. (2016). Antibacterial mesoporous molecular sieves modified with polymeric N-halamine. Materials Science and Engineering: C, 69, 1075-1080. doi:10.1016/j.msec.2016.08.017 | es_ES |
dc.description.references | Wang, Y., Liu, Y., Tian, H., Zhai, Y., Pan, N., Yin, M., … Liang, J. (2017). Preparation and characterization of antibacterial mesoporous sieves with N-halamine. Colloid and Polymer Science, 295(10), 1897-1904. doi:10.1007/s00396-017-4167-9 | es_ES |
dc.description.references | Wang, Y., Yin, M., Li, Z., Liu, Y., Ren, X., & Huang, T.-S. (2018). Preparation of antimicrobial and hemostatic cotton with modified mesoporous particles for biomedical applications. Colloids and Surfaces B: Biointerfaces, 165, 199-206. doi:10.1016/j.colsurfb.2018.02.045 | es_ES |
dc.description.references | Sharma, A., Dubey, A., & Kurchania, R. (2016). Vinyl carbazole (VC) functionalized mesoporous silica polymer nanocomposites (SBA/VC) for the antibacterial activity studies. Journal of Porous Materials, 23(4), 851-855. doi:10.1007/s10934-016-0141-z | es_ES |
dc.description.references | Cagri Karaburun, A., Asim Kaplancikli, Z., Gundogdu-Karaburun, N., & Demirci, F. (2011). Synthesis, Antibacterial and Antifungal Activities of Some Carbazole Dithiocarbamate Derivatives. Letters in Drug Design & Discovery, 8(9), 811-815. doi:10.2174/157018011797200858 | es_ES |
dc.description.references | Sharma, A., Robin Wilson, G., & Dubey, A. (2016). Antibacterial activity of vinyl imidazole(vi) functionalized silica polymer nanocomposites (SBA/VI) against Gram negative and Gram positive bacteria. New Journal of Chemistry, 40(1), 764-769. doi:10.1039/c5nj01536g | es_ES |
dc.description.references | Gehring, J., Trepka, B., Klinkenberg, N., Bronner, H., Schleheck, D., & Polarz, S. (2016). Sunlight-Triggered Nanoparticle Synergy: Teamwork of Reactive Oxygen Species and Nitric Oxide Released from Mesoporous Organosilica with Advanced Antibacterial Activity. Journal of the American Chemical Society, 138(9), 3076-3084. doi:10.1021/jacs.5b12073 | es_ES |
dc.description.references | Planas, O., Bresolí-Obach, R., Nos, J., Gallavardin, T., Ruiz-González, R., Agut, M., & Nonell, S. (2015). Synthesis, Photophysical Characterization, and Photoinduced Antibacterial Activity of Methylene Blue-loaded Amino- and Mannose-Targeted Mesoporous Silica Nanoparticles. Molecules, 20(4), 6284-6298. doi:10.3390/molecules20046284 | es_ES |
dc.description.references | Zampini, G., Planas, O., Marmottini, F., Gulías, O., Agut, M., Nonell, S., & Latterini, L. (2017). Morphology effects on singlet oxygen production and bacterial photoinactivation efficiency by different silica-protoporphyrin IX nanocomposites. RSC Advances, 7(24), 14422-14429. doi:10.1039/c7ra00784a | es_ES |
dc.description.references | Ruiz-Rico, M., Fuentes, C., Pérez-Esteve, É., Jiménez-Belenguer, A. I., Quiles, A., Marcos, M. D., … Barat, J. M. (2015). Bactericidal activity of caprylic acid entrapped in mesoporous silica nanoparticles. Food Control, 56, 77-85. doi:10.1016/j.foodcont.2015.03.016 | es_ES |
dc.description.references | Koneru, B., Shi, Y., Wang, Y.-C., Chavala, S., Miller, M., Holbert, B., … Di Pasqua, A. (2015). Tetracycline-Containing MCM-41 Mesoporous Silica Nanoparticles for the Treatment of Escherichia coli. Molecules, 20(11), 19690-19698. doi:10.3390/molecules201119650 | es_ES |
dc.description.references | Hao, N., Jayawardana, K. W., Chen, X., & Yan, M. (2015). One-Step Synthesis of Amine-Functionalized Hollow Mesoporous Silica Nanoparticles as Efficient Antibacterial and Anticancer Materials. ACS Applied Materials & Interfaces, 7(2), 1040-1045. doi:10.1021/am508219g | es_ES |
dc.description.references | Indrigo, J., Hunter, R. L., & Actor, J. K. (2003). Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology, 149(8), 2049-2059. doi:10.1099/mic.0.26226-0 | es_ES |
dc.description.references | Hao, N., Chen, X., Jayawardana, K. W., Wu, B., Sundhoro, M., & Yan, M. (2016). Shape control of mesoporous silica nanomaterials templated with dual cationic surfactants and their antibacterial activities. Biomaterials Science, 4(1), 87-91. doi:10.1039/c5bm00197h | es_ES |
dc.description.references | Wang, Y., Nor, Y. A., Song, H., Yang, Y., Xu, C., Yu, M., & Yu, C. (2016). Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. Journal of Materials Chemistry B, 4(15), 2646-2653. doi:10.1039/c6tb00053c | es_ES |
dc.description.references | Chan, A. C., Bravo Cadena, M., Townley, H. E., Fricker, M. D., & Thompson, I. P. (2017). Effective delivery of volatile biocides employing mesoporous silicates for treating biofilms. Journal of The Royal Society Interface, 14(126), 20160650. doi:10.1098/rsif.2016.0650 | es_ES |
dc.description.references | Mudakavi, R. J., Vanamali, S., Chakravortty, D., & Raichur, A. M. (2017). Development of arginine based nanocarriers for targeting and treatment of intracellularSalmonella. RSC Advances, 7(12), 7022-7032. doi:10.1039/c6ra27868j | es_ES |
dc.description.references | Trewyn, B. G., Whitman, C. M., & Lin, V. S.-Y. (2004). Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents. Nano Letters, 4(11), 2139-2143. doi:10.1021/nl048774r | es_ES |
dc.description.references | Cicuéndez, M., Izquierdo-Barba, I., Portolés, M. T., & Vallet-Regí, M. (2013). Biocompatibility and levofloxacin delivery of mesoporous materials. European Journal of Pharmaceutics and Biopharmaceutics, 84(1), 115-124. doi:10.1016/j.ejpb.2012.11.029 | es_ES |
dc.description.references | Xia, X., Pethe, K., Kim, R., Ballell, L., Barros, D., Cechetto, J., … Garcia-Bennett, A. (2014). Encapsulation of Anti-Tuberculosis Drugs within Mesoporous Silica and Intracellular Antibacterial Activities. Nanomaterials, 4(3), 813-826. doi:10.3390/nano4030813 | es_ES |
dc.description.references | Mudakavi, R. J., Raichur, A. M., & Chakravortty, D. (2014). Lipid coated mesoporous silica nanoparticles as an oral delivery system for targeting and treatment of intravacuolar Salmonella infections. RSC Adv., 4(105), 61160-61166. doi:10.1039/c4ra12973c | es_ES |
dc.description.references | Liu, Y., Liu, X., Xiao, Y., Chen, F., & Xiao, F. (2017). A multifunctional nanoplatform based on mesoporous silica nanoparticles for imaging-guided chemo/photodynamic synergetic therapy. RSC Advances, 7(49), 31133-31141. doi:10.1039/c7ra04549b | es_ES |
dc.description.references | Anirudhan, T. S., Binusreejayan, & Jayan, P. P. (2016). Development of functionalized chitosan-coated carboxylated mesoporous silica: a dual drug carrier. Designed Monomers and Polymers, 19(5), 381-393. doi:10.1080/15685551.2016.1169372 | es_ES |
dc.description.references | Izquierdo-Barba, I., Vallet-Regí, M., Kupferschmidt, N., Terasaki, O., Schmidtchen, A., & Malmsten, M. (2009). Incorporation of antimicrobial compounds in mesoporous silica film monolith. Biomaterials, 30(29), 5729-5736. doi:10.1016/j.biomaterials.2009.07.003 | es_ES |
dc.description.references | Aguilar-Colomer, A., Doadrio, J. C., Pérez-Jorge, C., Manzano, M., Vallet-Regí, M., & Esteban, J. (2016). Antibacterial effect of antibiotic-loaded SBA-15 on biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis. The Journal of Antibiotics, 70(3), 259-263. doi:10.1038/ja.2016.154 | es_ES |
dc.description.references | Zhou, P., Xia, Y., Cheng, X., Wang, P., Xie, Y., & Xu, S. (2014). Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zein composite scaffolds loaded with rhBMP-2. Biomaterials, 35(38), 10033-10045. doi:10.1016/j.biomaterials.2014.09.009 | es_ES |
dc.description.references | Colilla, M., Martínez-Carmona, M., Sánchez-Salcedo, S., Ruiz-González, M. L., González-Calbet, J. M., & Vallet-Regí, M. (2014). A novel zwitterionic bioceramic with dual antibacterial capability. J. Mater. Chem. B, 2(34), 5639-5651. doi:10.1039/c4tb00690a | es_ES |
dc.description.references | Balaure, P. C., Boarca, B., Popescu, R. C., Savu, D., Trusca, R., Vasile, B. Ștefan, … Andronescu, E. (2017). Bioactive mesoporous silica nanostructures with anti-microbial and anti-biofilm properties. International Journal of Pharmaceutics, 531(1), 35-46. doi:10.1016/j.ijpharm.2017.08.062 | es_ES |
dc.description.references | Michailidis, M., Sorzabal-Bellido, I., Adamidou, E. A., Diaz-Fernandez, Y. A., Aveyard, J., Wengier, R., … Shchukin, D. (2017). Modified Mesoporous Silica Nanoparticles with a Dual Synergetic Antibacterial Effect. ACS Applied Materials & Interfaces, 9(44), 38364-38372. doi:10.1021/acsami.7b14642 | es_ES |
dc.description.references | Chang, Z., Wang, Z., Lu, M., Li, M., Li, L., Zhang, Y., … Dong, W. (2017). Magnetic Janus nanorods for efficient capture, separation and elimination of bacteria. RSC Advances, 7(6), 3550-3553. doi:10.1039/c6ra27296g | es_ES |
dc.description.references | Chen, G., Li, Z., Wang, X., Xie, L., Qi, Q., & Fang, W. (2014). Preparation of CTAB-loaded magnetic nanospheres for rapid bacterial capture and decontamination. Materials Letters, 134, 290-294. doi:10.1016/j.matlet.2014.07.100 | es_ES |
dc.description.references | Stanton, M. M., Park, B.-W., Vilela, D., Bente, K., Faivre, D., Sitti, M., & Sánchez, S. (2017). Magnetotactic Bacteria Powered Biohybrids TargetE. coliBiofilms. ACS Nano, 11(10), 9968-9978. doi:10.1021/acsnano.7b04128 | es_ES |
dc.description.references | Wan, M., Zhang, J., Wang, Q., Zhan, S., Chen, X., Mao, C., … Shen, J. (2017). In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications. ACS Applied Materials & Interfaces, 9(22), 18609-18618. doi:10.1021/acsami.7b05163 | es_ES |
dc.description.references | Wu, F., Xu, T., Zhao, G., Meng, S., Wan, M., Chi, B., … Shen, J. (2017). Mesoporous Silica Nanoparticles-Encapsulated Agarose and Heparin as Anticoagulant and Resisting Bacterial Adhesion Coating for Biomedical Silicone. Langmuir, 33(21), 5245-5252. doi:10.1021/acs.langmuir.7b00567 | es_ES |
dc.description.references | Xu, G., Shen, X., Dai, L., Ran, Q., Ma, P., & Cai, K. (2017). Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates. Materials Science and Engineering: C, 70, 386-395. doi:10.1016/j.msec.2016.08.050 | es_ES |
dc.description.references | Yu, J., Yang, H., Li, K., Ren, H., Lei, J., & Huang, C. (2017). Development of Epigallocatechin-3-gallate-Encapsulated Nanohydroxyapatite/Mesoporous Silica for Therapeutic Management of Dentin Surface. ACS Applied Materials & Interfaces, 9(31), 25796-25807. doi:10.1021/acsami.7b06597 | es_ES |
dc.description.references | Li, D., Nie, W., Chen, L., Miao, Y., Zhang, X., Chen, F., … He, C. (2017). Fabrication of curcumin-loaded mesoporous silica incorporated polyvinyl pyrrolidone nanofibers for rapid hemostasis and antibacterial treatment. RSC Advances, 7(13), 7973-7982. doi:10.1039/c6ra27319j | es_ES |
dc.description.references | Hashemikia, S., Hemmatinejad, N., Ahmadi, E., & Montazer, M. (2016). Antibacterial and anti-inflammatory drug delivery properties on cotton fabric using betamethasone-loaded mesoporous silica particles stabilized with chitosan and silicone softener. Drug Delivery, 23(8), 2946-2955. doi:10.3109/10717544.2015.1132795 | es_ES |
dc.description.references | Zhang, J. F., Wu, R., Fan, Y., Liao, S., Wang, Y., Wen, Z. T., & Xu, X. (2014). Antibacterial Dental Composites with Chlorhexidine and Mesoporous Silica. Journal of Dental Research, 93(12), 1283-1289. doi:10.1177/0022034514555143 | es_ES |
dc.description.references | Rădulescu, D., Voicu, G., Oprea, A. E., Andronescu, E., Grumezescu, V., Holban, A. M., … Chifiriuc, M. C. (2016). Mesoporous silica coatings for cephalosporin active release at the bone-implant interface. Applied Surface Science, 374, 165-171. doi:10.1016/j.apsusc.2015.10.183 | es_ES |
dc.description.references | Perez, L. M., Lalueza, P., Monzon, M., Puertolas, J. A., Arruebo, M., & Santamaría, J. (2011). Hollow porous implants filled with mesoporous silica particles as a two-stage antibiotic-eluting device. International Journal of Pharmaceutics, 409(1-2), 1-8. doi:10.1016/j.ijpharm.2011.02.015 | es_ES |
dc.description.references | Ehlert, N., Badar, M., Christel, A., Lohmeier, S. J., Luessenhop, T., Stieve, M., … Behrens, P. (2011). Mesoporous silica coatings for controlled release of the antibiotic ciprofloxacin from implants. J. Mater. Chem., 21(3), 752-760. doi:10.1039/c0jm01487g | es_ES |
dc.description.references | Cicuéndez, M., Doadrio, J. C., Hernández, A., Portolés, M. T., Izquierdo-Barba, I., & Vallet-Regí, M. (2018). Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. Acta Biomaterialia, 65, 450-461. doi:10.1016/j.actbio.2017.11.009 | es_ES |
dc.description.references | Seneviratne, C. J., Leung, K. C.-F., Wong, C.-H., Lee, S.-F., Li, X., Leung, P. C., … Jin, L. (2014). Nanoparticle-Encapsulated Chlorhexidine against Oral Bacterial Biofilms. PLoS ONE, 9(8), e103234. doi:10.1371/journal.pone.0103234 | es_ES |
dc.description.references | Tamanna, T., Landersdorfer, C. B., Ng, H. J., Bulitta, J. B., Wood, P., & Yu, A. (2018). Prolonged and continuous antibacterial and anti-biofilm activities of thin films embedded with gentamicin-loaded mesoporous silica nanoparticles. Applied Nanoscience, 8(6), 1471-1482. doi:10.1007/s13204-018-0807-8 | es_ES |
dc.description.references | Mas, N., Galiana, I., Mondragón, L., Aznar, E., Climent, E., Cabedo, N., … Amorós, P. (2013). Enhanced Efficacy and Broadening of Antibacterial Action of Drugs via the Use of Capped Mesoporous Nanoparticles. Chemistry - A European Journal, 19(34), 11167-11171. doi:10.1002/chem.201302170 | es_ES |
dc.description.references | Velikova, N., Mas, N., Miguel-Romero, L., Polo, L., Stolte, E., Zaccaria, E., … Wells, J. (2017). Broadening the antibacterial spectrum of histidine kinase autophosphorylation inhibitors via the use of ε-poly-L-lysine capped mesoporous silica-based nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 13(2), 569-581. doi:10.1016/j.nano.2016.09.011 | es_ES |
dc.description.references | Alsaiari, S. K., Hammami, M. A., Croissant, J. G., Omar, H. W., Neelakanda, P., Yapici, T., … Khashab, N. M. (2017). Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections. Advanced Healthcare Materials, 6(6), 1601135. doi:10.1002/adhm.201601135 | es_ES |
dc.description.references | Yan, Z., Shi, P., Ren, J., & Qu, X. (2015). A «Sense-and-Treat» Hydrogel Used for Treatment of Bacterial Infection on the Solid Matrix. Small, 11(41), 5540-5544. doi:10.1002/smll.201501958 | es_ES |
dc.description.references | Duan, F., Feng, X., Jin, Y., Liu, D., Yang, X., Zhou, G., … Zhang, J. (2017). Metal–carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of MRSA. Biomaterials, 144, 155-165. doi:10.1016/j.biomaterials.2017.08.024 | es_ES |
dc.description.references | Yu, E., Galiana, I., Martínez-Máñez, R., Stroeve, P., Marcos, M. D., Aznar, E., … Amorós, P. (2015). Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme. Colloids and Surfaces B: Biointerfaces, 135, 652-660. doi:10.1016/j.colsurfb.2015.06.048 | es_ES |
dc.description.references | Wu, Y., Long, Y., Li, Q.-L., Han, S., Ma, J., Yang, Y.-W., & Gao, H. (2015). Layer-by-Layer (LBL) Self-Assembled Biohybrid Nanomaterials for Efficient Antibacterial Applications. ACS Applied Materials & Interfaces, 7(31), 17255-17263. doi:10.1021/acsami.5b04216 | es_ES |
dc.description.references | Li, Q., Wu, Y., Lu, H., Wu, X., Chen, S., Song, N., … Gao, H. (2017). Construction of Supramolecular Nanoassembly for Responsive Bacterial Elimination and Effective Bacterial Detection. ACS Applied Materials & Interfaces, 9(11), 10180-10189. doi:10.1021/acsami.7b00873 | es_ES |
dc.description.references | Lee, B.-Y., Li, Z., Clemens, D. L., Dillon, B. J., Hwang, A. A., Zink, J. I., & Horwitz, M. A. (2016). Redox-Triggered Release of Moxifloxacin from Mesoporous Silica Nanoparticles Functionalized with Disulfide Snap-Tops Enhances Efficacy Against Pneumonic Tularemia in Mice. Small, 12(27), 3690-3702. doi:10.1002/smll.201600892 | es_ES |
dc.description.references | González, B., Colilla, M., Díez, J., Pedraza, D., Guembe, M., Izquierdo-Barba, I., & Vallet-Regí, M. (2018). Mesoporous silica nanoparticles decorated with polycationic dendrimers for infection treatment. Acta Biomaterialia, 68, 261-271. doi:10.1016/j.actbio.2017.12.041 | es_ES |
dc.description.references | Lara, H. H., Ayala-Núñez, N. V., Ixtepan Turrent, L. del C., & Rodríguez Padilla, C. (2009). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26(4), 615-621. doi:10.1007/s11274-009-0211-3 | es_ES |
dc.description.references | Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine, 3(2), 168-171. doi:10.1016/j.nano.2007.02.001 | es_ES |
dc.description.references | Sarkar, S., Jana, A. D., Samanta, S. K., & Mostafa, G. (2007). Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron, 26(15), 4419-4426. doi:10.1016/j.poly.2007.05.056 | es_ES |
dc.description.references | Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., & Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18(22), 225103. doi:10.1088/0957-4484/18/22/225103 | es_ES |
dc.description.references | Ren, G., Hu, D., Cheng, E. W. C., Vargas-Reus, M. A., Reip, P., & Allaker, R. P. (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587-590. doi:10.1016/j.ijantimicag.2008.12.004 | es_ES |
dc.description.references | MARTINEZFLORES, E., NEGRETE, J., & TORRESVILLASENOR, G. (2003). Structure and properties of Zn–Al–Cu alloy reinforced with alumina particles. Materials & Design, 24(4), 281-286. doi:10.1016/s0261-3069(03)00028-1 | es_ES |
dc.description.references | Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., … Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281. doi:10.1111/j.1469-0691.2011.03570.x | es_ES |
dc.description.references | Matsumura, Y., Yoshikata, K., Kunisaki, S., & Tsuchido, T. (2003). Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Applied and Environmental Microbiology, 69(7), 4278-4281. doi:10.1128/aem.69.7.4278-4281.2003 | es_ES |
dc.description.references | Ruparelia, J. P., Chatterjee, A. K., Duttagupta, S. P., & Mukherji, S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 4(3), 707-716. doi:10.1016/j.actbio.2007.11.006 | es_ES |
dc.description.references | Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346-2353. doi:10.1088/0957-4484/16/10/059 | es_ES |
dc.description.references | Shuguang Wang, Lawson, R., Ray, P. C., & Hongtao Yu. (2011). Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicology and Industrial Health, 27(6), 547-554. doi:10.1177/0748233710393395 | es_ES |
dc.description.references | Santo, C. E., Taudte, N., Nies, D. H., & Grass, G. (2007). Contribution of Copper Ion Resistance to Survival of Escherichia coli on Metallic Copper Surfaces. Applied and Environmental Microbiology, 74(4), 977-986. doi:10.1128/aem.01938-07 | es_ES |
dc.description.references | Nathan, C., & Cunningham-Bussel, A. (2013). Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nature Reviews Immunology, 13(5), 349-361. doi:10.1038/nri3423 | es_ES |
dc.description.references | Soenen, S. J., Rivera-Gil, P., Montenegro, J.-M., Parak, W. J., De Smedt, S. C., & Braeckmans, K. (2011). Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 6(5), 446-465. doi:10.1016/j.nantod.2011.08.001 | es_ES |
dc.description.references | Pan, X., Redding, J. E., Wiley, P. A., Wen, L., McConnell, J. S., & Zhang, B. (2010). Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere, 79(1), 113-116. doi:10.1016/j.chemosphere.2009.12.056 | es_ES |
dc.description.references | Ashkarran, A. A., Ghavami, M., Aghaverdi, H., Stroeve, P., & Mahmoudi, M. (2012). Bacterial Effects and Protein Corona Evaluations: Crucial Ignored Factors in the Prediction of Bio-Efficacy of Various Forms of Silver Nanoparticles. Chemical Research in Toxicology, 25(6), 1231-1242. doi:10.1021/tx300083s | es_ES |
dc.description.references | Fang, J., Lyon, D. Y., Wiesner, M. R., Dong, J., & Alvarez. (2007). Effect of a Fullerene Water Suspension on Bacterial Phospholipids and Membrane Phase Behavior. Environmental Science & Technology, 41(7), 2636-2642. doi:10.1021/es062181w | es_ES |
dc.description.references | Simon-Deckers, A., Loo, S., Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., … Carrière, M. (2009). Size-, Composition- and Shape-Dependent Toxicological Impact of Metal Oxide Nanoparticles and Carbon Nanotubes toward Bacteria. Environmental Science & Technology, 43(21), 8423-8429. doi:10.1021/es9016975 | es_ES |
dc.description.references | Baek, Y.-W., & An, Y.-J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of The Total Environment, 409(8), 1603-1608. doi:10.1016/j.scitotenv.2011.01.014 | es_ES |
dc.description.references | Tian, Y., Qi, J., Zhang, W., Cai, Q., & Jiang, X. (2014). Facile, One-Pot Synthesis, and Antibacterial Activity of Mesoporous Silica Nanoparticles Decorated with Well-Dispersed Silver Nanoparticles. ACS Applied Materials & Interfaces, 6(15), 12038-12045. doi:10.1021/am5026424 | es_ES |
dc.description.references | Huang, R.-S., Hou, B.-F., Li, H.-T., Fu, X.-C., & Xie, C.-G. (2015). Preparation of silver nanoparticles supported mesoporous silica microspheres with perpendicularly aligned mesopore channels and their antibacterial activities. RSC Advances, 5(75), 61184-61190. doi:10.1039/c5ra06358b | es_ES |
dc.description.references | Dong, R.-H., Jia, Y.-X., Qin, C.-C., Zhan, L., Yan, X., Cui, L., … Long, Y.-Z. (2016). In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care. Nanoscale, 8(6), 3482-3488. doi:10.1039/c5nr08367b | es_ES |
dc.description.references | Xu, P., Liang, J., Cao, X., Tang, J., Gao, J., Wang, L., … Teng, Z. (2016). Facile synthesis of monodisperse of hollow mesoporous SiO2 nanoparticles and in-situ growth of Ag nanoparticles for antibacterial. Journal of Colloid and Interface Science, 474, 114-118. doi:10.1016/j.jcis.2016.04.009 | es_ES |
dc.description.references | Shen, Q., Wang, J., Yang, H., Ding, X., Luo, Z., Wang, H., … Cheng, D. (2014). Controllable preparation and properties of mesoporous silica hollow microspheres inside-loaded Ag nanoparticles. Journal of Non-Crystalline Solids, 391, 112-116. doi:10.1016/j.jnoncrysol.2014.03.014 | es_ES |
dc.description.references | Wan, X., Zhuang, L., She, B., Deng, Y., Chen, D., & Tang, J. (2016). In-situ reduction of monodisperse nanosilver on hierarchical wrinkled mesoporous silica with radial pore channels and its antibacterial performance. Materials Science and Engineering: C, 65, 323-330. doi:10.1016/j.msec.2016.04.058 | es_ES |
dc.description.references | Song, Y., Jiang, H., Wang, B., Kong, Y., & Chen, J. (2018). Silver-Incorporated Mussel-Inspired Polydopamine Coatings on Mesoporous Silica as an Efficient Nanocatalyst and Antimicrobial Agent. ACS Applied Materials & Interfaces, 10(2), 1792-1801. doi:10.1021/acsami.7b18136 | es_ES |
dc.description.references | Liong, M., France, B., Bradley, K. A., & Zink, J. I. (2009). Antimicrobial Activity of Silver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles. Advanced Materials, 21(17), 1684-1689. doi:10.1002/adma.200802646 | es_ES |
dc.description.references | Dong, L. H., Liu, T., Zhang, L., & Yin, Y. S. (2011). Reducing Microbiological Adhesion on Aluminum by Using Silver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles. Advanced Materials Research, 236-238, 1775-1778. doi:10.4028/www.scientific.net/amr.236-238.1775 | es_ES |
dc.description.references | Liu, T., Dong, Y., He, T., Guo, N., & Zhang, F. (2013). Films with nanosilvers improve biocorrosion resistance of aluminium in sea water. Surface Engineering, 30(1), 6-10. doi:10.1179/1743294413y.0000000192 | es_ES |
dc.description.references | Yin, B., Liu, T., Dong, L. H., Zhang, L., & Yin, Y. S. (2012). Reducing Microbially-Influenced Corrosion on Aluminum by Using Organosiloxane Sol Film with Silver Nanocrystals. Advanced Materials Research, 463-464, 1479-1483. doi:10.4028/www.scientific.net/amr.463-464.1479 | es_ES |
dc.description.references | Yang, H., Liu, Y., Shen, Q., Chen, L., You, W., Wang, X., & Sheng, J. (2012). Mesoporous silica microcapsule-supported Ag nanoparticles fabricated via nano-assembly and its antibacterial properties. Journal of Materials Chemistry, 22(45), 24132. doi:10.1039/c2jm35621j | es_ES |
dc.description.references | Yang, H., You, W., Shen, Q., Wang, X., Sheng, J., Cheng, D., … Wu, C. (2014). Preparation of lotus-leaf-like antibacterial film based on mesoporous silica microcapsule-supported Ag nanoparticles. RSC Adv., 4(6), 2793-2796. doi:10.1039/c3ra45382k | es_ES |
dc.description.references | Pandey, S., & Ramontja, J. (2016). Sodium alginate stabilized silver nanoparticles–silica nanohybrid and their antibacterial characteristics. International Journal of Biological Macromolecules, 93, 712-723. doi:10.1016/j.ijbiomac.2016.09.033 | es_ES |
dc.description.references | Ma, C., Wei, Q., Cao, B., Cheng, X., Tian, J., Pu, H., … Cao, L. (2017). A multifunctional bioactive material that stimulates osteogenesis and promotes the vascularization bone marrow stem cells and their resistance to bacterial infection. PLOS ONE, 12(3), e0172499. doi:10.1371/journal.pone.0172499 | es_ES |
dc.description.references | Ma, Z., Ji, H., Teng, Y., Dong, G., Tan, D., Guan, M., … Zhang, M. (2011). Engineering and optimisation of medically multi-functional mesoporous SiO2 fibers as effective wound dressing material. Journal of Materials Chemistry, 21(26), 9595. doi:10.1039/c1jm11115a | es_ES |
dc.description.references | Naik, B., Desai, V., Kowshik, M., Prasad, V. S., Fernando, G. F., & Ghosh, N. N. (2011). Synthesis of Ag/AgCl–mesoporous silica nanocomposites using a simple aqueous solution-based chemical method and a study of their antibacterial activity on E. coli. Particuology, 9(3), 243-247. doi:10.1016/j.partic.2010.12.001 | es_ES |
dc.description.references | Gao, Y., Dong, Q., Lan, S., Cai, Q., Simalou, O., Zhang, S., … Dong, A. (2015). Decorating CdTe QD-Embedded Mesoporous Silica Nanospheres with Ag NPs to Prevent Bacteria Invasion for Enhanced Anticounterfeit Applications. ACS Applied Materials & Interfaces, 7(18), 10022-10033. doi:10.1021/acsami.5b02472 | es_ES |
dc.description.references | Carmona, D., Lalueza, P., Balas, F., Arruebo, M., & Santamaría, J. (2012). Mesoporous silica loaded with peracetic acid and silver nanoparticles as a dual-effect, highly efficient bactericidal agent. Microporous and Mesoporous Materials, 161, 84-90. doi:10.1016/j.micromeso.2012.05.012 | es_ES |
dc.description.references | Chang, Z., Wang, Z., Lu, M., Shao, D., Yue, J., Yang, D., … Dong, W. (2017). Janus silver mesoporous silica nanobullets with synergistic antibacterial functions. Colloids and Surfaces B: Biointerfaces, 157, 199-206. doi:10.1016/j.colsurfb.2017.05.079 | es_ES |
dc.description.references | Lu, M., Wang, Q., Chang, Z., Wang, Z., Zheng, X., Shao, D., … Zhou, Y. (2017). Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles. International Journal of Nanomedicine, Volume 12, 3577-3589. doi:10.2147/ijn.s133846 | es_ES |
dc.description.references | Saad, A., Cabet, E., Lilienbaum, A., Hamadi, S., Abderrabba, M., & Chehimi, M. M. (2017). Polypyrrole/Ag/mesoporous silica nanocomposite particles: Design by photopolymerization in aqueous medium and antibacterial activity. Journal of the Taiwan Institute of Chemical Engineers, 80, 1022-1030. doi:10.1016/j.jtice.2017.09.024 | es_ES |
dc.description.references | Song, Z., Ma, Y., Xia, G., Wang, Y., Kapadia, W., Sun, Z., … Huang, X. (2017). In vitro and in vivo combined antibacterial effect of levofloxacin/silver co-loaded electrospun fibrous membranes. Journal of Materials Chemistry B, 5(36), 7632-7643. doi:10.1039/c7tb01243h | es_ES |
dc.description.references | Kuthati, Y., Kankala, R. K., Busa, P., Lin, S.-X., Deng, J.-P., Mou, C.-Y., & Lee, C.-H. (2017). Phototherapeutic spectrum expansion through synergistic effect of mesoporous silica trio-nanohybrids against antibiotic-resistant gram-negative bacterium. Journal of Photochemistry and Photobiology B: Biology, 169, 124-133. doi:10.1016/j.jphotobiol.2017.03.003 | es_ES |
dc.description.references | YOSHIMURA, M., NAMURA, S., AKAMATSU, H., & HORIO, T. (1996). Antimicrobial effects of phototherapy and photochemotherapy in vivo and in vitro. British Journal of Dermatology, 135(4), 528-532. doi:10.1046/j.1365-2133.1996.d01-1034.x | es_ES |
dc.description.references | Matsunaga, T., Tomoda, R., Nakajima, T., & Wake, H. (1985). Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters, 29(1-2), 211-214. doi:10.1111/j.1574-6968.1985.tb00864.x | es_ES |
dc.description.references | Kim, B., Kim, D., Cho, D., & Cho, S. (2003). Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere, 52(1), 277-281. doi:10.1016/s0045-6535(03)00051-1 | es_ES |
dc.description.references | Chawengkijwanich, C., & Hayata, Y. (2008). Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. International Journal of Food Microbiology, 123(3), 288-292. doi:10.1016/j.ijfoodmicro.2007.12.017 | es_ES |
dc.description.references | Majdalawieh, A., Kanan, M. C., El-Kadri, O., & Kanan, S. M. (2014). Recent Advances in Gold and Silver Nanoparticles: Synthesis and Applications. Journal of Nanoscience and Nanotechnology, 14(7), 4757-4780. doi:10.1166/jnn.2014.9526 | es_ES |
dc.description.references | Norman, R. S., Stone, J. W., Gole, A., Murphy, C. J., & Sabo-Attwood, T. L. (2008). Targeted Photothermal Lysis of the Pathogenic Bacteria,Pseudomonas aeruginosa, with Gold Nanorods. Nano Letters, 8(1), 302-306. doi:10.1021/nl0727056 | es_ES |
dc.description.references | Brown, A. N., Smith, K., Samuels, T. A., Lu, J., Obare, S. O., & Scott, M. E. (2012). Nanoparticles Functionalized with Ampicillin Destroy Multiple-Antibiotic-Resistant Isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and Methicillin-Resistant Staphylococcus aureus. Applied and Environmental Microbiology, 78(8), 2768-2774. doi:10.1128/aem.06513-11 | es_ES |
dc.description.references | Chamundeeswari, M., Sobhana, S. S. L., Jacob, J. P., Kumar, M. G., Devi, M. P., Sastry, T. P., & Mandal, A. B. (2010). Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnology and Applied Biochemistry, 55(1), 29-35. doi:10.1042/ba20090198 | es_ES |
dc.description.references | Zhao, Y., Tian, Y., Cui, Y., Liu, W., Ma, W., & Jiang, X. (2010). Small Molecule-Capped Gold Nanoparticles as Potent Antibacterial Agents That Target Gram-Negative Bacteria. Journal of the American Chemical Society, 132(35), 12349-12356. doi:10.1021/ja1028843 | es_ES |
dc.description.references | Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fiévet, F. (2006). Toxicological Impact Studies Based onEscherichiacoliBacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Letters, 6(4), 866-870. doi:10.1021/nl052326h | es_ES |
dc.description.references | Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.-C., & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71(7), 1308-1316. doi:10.1016/j.chemosphere.2007.11.047 | es_ES |
dc.description.references | Chorianopoulos, N. G., Tsoukleris, D. S., Panagou, E. Z., Falaras, P., & Nychas, G.-J. E. (2011). Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiology, 28(1), 164-170. doi:10.1016/j.fm.2010.07.025 | es_ES |
dc.description.references | Díez, B., Roldán, N., Martín, A., Sotto, A., Perdigón-Melón, J. A., Arsuaga, J., & Rosal, R. (2017). Fouling and biofouling resistance of metal-doped mesostructured silica/polyethersulfone ultrafiltration membranes. Journal of Membrane Science, 526, 252-263. doi:10.1016/j.memsci.2016.12.051 | es_ES |
dc.description.references | Zarzuela, R., Carbú, M., Gil, M. L. A., Cantoral, J. M., & Mosquera, M. J. (2017). CuO/SiO2 nanocomposites: A multifunctional coating for application on building stone. Materials & Design, 114, 364-372. doi:10.1016/j.matdes.2016.11.009 | es_ES |
dc.description.references | Tao, Y., Ju, E., Ren, J., & Qu, X. (2014). Bifunctionalized Mesoporous Silica-Supported Gold Nanoparticles: Intrinsic Oxidase and Peroxidase Catalytic Activities for Antibacterial Applications. Advanced Materials, 27(6), 1097-1104. doi:10.1002/adma.201405105 | es_ES |
dc.description.references | Cendrowski, K. (2013). Mesoporous Silica Nanospheres Functionalized by Tio2 as a Photoactive Antibacterial Agent. Journal of Nanomedicine & Nanotechnology, 04(06). doi:10.4172/2157-7439.1000182 | es_ES |
dc.description.references | Cendrowski, K., Peruzynska, M., Markowska-Szczupak, A., Chen, X., Wajda, A., Lapczuk, J., … Mijowska, E. (2014). Antibacterial performance of nanocrystallined titania confined in mesoporous silica nanotubes. Biomedical Microdevices, 16(3), 449-458. doi:10.1007/s10544-014-9847-3 | es_ES |
dc.description.references | Rakhshaei, R., & Namazi, H. (2017). A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Materials Science and Engineering: C, 73, 456-464. doi:10.1016/j.msec.2016.12.097 | es_ES |
dc.description.references | Hu, J.-L., Yang, Q.-H., Lin, H., Ye, Y.-P., He, Q., Zhang, J.-N., & Qian, H.-S. (2013). Mesoporous silica nanospheres decorated with CdS nanocrystals for enhanced photocatalytic and excellent antibacterial activities. Nanoscale, 5(14), 6327. doi:10.1039/c3nr01329d | es_ES |
dc.description.references | Gehring, J., Schleheck, D., Trepka, B., & Polarz, S. (2014). Mesoporous Organosilica Nanoparticles Containing Superacid and Click Functionalities Leading to Cooperativity in Biocidal Coatings. ACS Applied Materials & Interfaces, 7(1), 1021-1029. doi:10.1021/am5083057 | es_ES |
dc.description.references | Dai, C., Yuan, Y., Liu, C., Wei, J., Hong, H., Li, X., & Pan, X. (2009). Degradable, antibacterial silver exchanged mesoporous silica spheres for hemorrhage control. Biomaterials, 30(29), 5364-5375. doi:10.1016/j.biomaterials.2009.06.052 | es_ES |
dc.description.references | Wang, C., Hong, H., Lin, Z., Yuan, Y., Liu, C., Ma, X., & Cao, X. (2015). Tethering silver ions on amino-functionalized mesoporous silica for enhanced and sustained antibacterial properties. RSC Advances, 5(126), 104289-104298. doi:10.1039/c5ra22225g | es_ES |
dc.description.references | Şen Karaman, D., Sarwar, S., Desai, D., Björk, E. M., Odén, M., Chakrabarti, P., … Chakraborti, S. (2016). Shape engineering boosts antibacterial activity of chitosan coated mesoporous silica nanoparticle doped with silver: a mechanistic investigation. Journal of Materials Chemistry B, 4(19), 3292-3304. doi:10.1039/c5tb02526e | es_ES |
dc.description.references | Min, S.-H., Yang, J.-H., Kim, J. Y., & Kwon, Y.-U. (2010). Development of white antibacterial pigment based on silver chloride nanoparticles and mesoporous silica and its polymer composite. Microporous and Mesoporous Materials, 128(1-3), 19-25. doi:10.1016/j.micromeso.2009.07.020 | es_ES |
dc.description.references | Pourshahrestani, S., Zeimaran, E., Adib Kadri, N., Gargiulo, N., Samuel, S., Naveen, S. V., … Towler, M. R. (2016). Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy. Journal of Materials Chemistry B, 4(1), 71-86. doi:10.1039/c5tb02062j | es_ES |
dc.description.references | Song, Y., Jiang, H., Bi, H., Zhong, G., Chen, J., Wu, Y., & Wei, W. (2018). Multifunctional Bismuth Oxychloride/Mesoporous Silica Composites for Photocatalysis, Antibacterial Test, and Simultaneous Stripping Analysis of Heavy Metals. ACS Omega, 3(1), 973-981. doi:10.1021/acsomega.7b01590 | es_ES |
dc.description.references | Ghosh, S., & Vandana, V. (2017). Nano-structured mesoporous silica/silver composite: Synthesis, characterization and targeted application towards water purification. Materials Research Bulletin, 88, 291-300. doi:10.1016/j.materresbull.2016.12.044 | es_ES |
dc.description.references | Kuthati, Y., Kankala, R. K., Lin, S.-X., Weng, C.-F., & Lee, C.-H. (2015). pH-Triggered Controllable Release of Silver–Indole-3 Acetic Acid Complexes from Mesoporous Silica Nanoparticles (IBN-4) for Effectively Killing Malignant Bacteria. Molecular Pharmaceutics, 12(7), 2289-2304. doi:10.1021/mp500836w | es_ES |
dc.description.references | Chen, C.-C., Wu, H.-H., Huang, H.-Y., Liu, C.-W., & Chen, Y.-N. (2016). Synthesis of High Valence Silver-Loaded Mesoporous Silica with Strong Antibacterial Properties. International Journal of Environmental Research and Public Health, 13(1), 99. doi:10.3390/ijerph13010099 | es_ES |
dc.description.references | Li, X., Zuo, W., Luo, M., Shi, Z., Cui, Z., & Zhu, S. (2013). Silver chloride loaded mesoporous silica particles and their application in the antibacterial coatings on denture base. Chemical Research in Chinese Universities, 29(6), 1214-1218. doi:10.1007/s40242-013-3092-9 | es_ES |
dc.description.references | Rostamnia, S., Doustkhah, E., Estakhri, S., & Karimi, Z. (2016). Layer by layer growth of silver chloride nanoparticle within the pore channels of SBA-15/SO3H mesoporous silica (AgClNP/SBA-15/SO3K): Synthesis, characterization and antibacterial properties. Physica E: Low-dimensional Systems and Nanostructures, 76, 146-150. doi:10.1016/j.physe.2015.10.026 | es_ES |
dc.description.references | Laskowski, L., Laskowska, M., Fijalkowski, K., Piech, H., Jelonkiewicz, J., Jaskulak, M., … Dulski, M. (2017). New Class of Antimicrobial Agents: SBA-15 Silica Containing Anchored Copper Ions. Journal of Nanomaterials, 2017, 1-12. doi:10.1155/2017/1287698 | es_ES |
dc.description.references | Díaz-García, D., Ardiles, P., Prashar, S., Rodríguez-Diéguez, A., Páez, P., & Gómez-Ruiz, S. (2019). Preparation and Study of the Antibacterial Applications and Oxidative Stress Induction of Copper Maleamate-Functionalized Mesoporous Silica Nanoparticles. Pharmaceutics, 11(1), 30. doi:10.3390/pharmaceutics11010030 | es_ES |
dc.description.references | Tahmasbi, L., Sedaghat, T., Motamedi, H., & Kooti, M. (2018). Mesoporous silica nanoparticles supported copper(II) and nickel(II) Schiff base complexes: Synthesis, characterization, antibacterial activity and enzyme immobilization. Journal of Solid State Chemistry, 258, 517-525. doi:10.1016/j.jssc.2017.11.015 | es_ES |