- -

Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers

Mostrar el registro completo del ítem

Quiles-Carrillo, L.; Montanes, N.; Lagaron, JM.; Balart, R.; Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences. 9(3):1-17. https://doi.org/10.3390/app9030533

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140942

Ficheros en el ítem

Metadatos del ítem

Título: Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers
Autor: Quiles-Carrillo, Luis Montanes, Nestor Lagaron, Jose M. Balart, Rafael Torres-Giner, Sergio
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Fecha difusión:
Resumen:
[EN] The present research reports on the development of bi- and multilayer polylactide (PLA) films by the incorporation of electrospun nanostructured PLA coatings and interlayers containing the antioxidant gallic acid (GA) ...[+]
Palabras clave: PLA , GA , Electrospinning , Multilayer films , Bioactive packaging
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app9030533
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app9030533
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/
...[+]
info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/
info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/
info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/
info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/
info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
[-]
Agradecimientos:
This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) program numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R and by the EU H2020 project YPACK (reference number 773872).
Tipo: Artículo

References

Cencic, A., & Chingwaru, W. (2010). The Role of Functional Foods, Nutraceuticals, and Food Supplements in Intestinal Health. Nutrients, 2(6), 611-625. doi:10.3390/nu2060611

Hasler, C. M. (2002). Functional Foods: Benefits, Concerns and Challenges—A Position Paper from the American Council on Science and Health. The Journal of Nutrition, 132(12), 3772-3781. doi:10.1093/jn/132.12.3772

Fogliano, V., & Vitaglione, P. (2005). Functional foods: Planning and development. Molecular Nutrition & Food Research, 49(3), 256-262. doi:10.1002/mnfr.200400067 [+]
Cencic, A., & Chingwaru, W. (2010). The Role of Functional Foods, Nutraceuticals, and Food Supplements in Intestinal Health. Nutrients, 2(6), 611-625. doi:10.3390/nu2060611

Hasler, C. M. (2002). Functional Foods: Benefits, Concerns and Challenges—A Position Paper from the American Council on Science and Health. The Journal of Nutrition, 132(12), 3772-3781. doi:10.1093/jn/132.12.3772

Fogliano, V., & Vitaglione, P. (2005). Functional foods: Planning and development. Molecular Nutrition & Food Research, 49(3), 256-262. doi:10.1002/mnfr.200400067

Lopez-Rubio, A., Gavara, R., & Lagaron, J. M. (2006). Bioactive packaging: turning foods into healthier foods through biomaterials. Trends in Food Science & Technology, 17(10), 567-575. doi:10.1016/j.tifs.2006.04.012

Mellinas, C., Valdés, A., Ramos, M., Burgos, N., Garrigós, M. del C., & Jiménez, A. (2015). Active edible films: Current state and future trends. Journal of Applied Polymer Science, 133(2), n/a-n/a. doi:10.1002/app.42631

Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. (2016). Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 107, 333-366. doi:10.1016/j.addr.2016.03.010

Lazzeri, L., Cascone, M. G., Quiriconi, S., Morabito, L., & Giusti, P. (2004). Biodegradable hollow microfibres to produce bioactive scaffolds. Polymer International, 54(1), 101-107. doi:10.1002/pi.1648

Ma, J., Luo, X.-D., Protiva, P., Yang, H., Ma, C., Basile, M. J., … Kennelly, E. J. (2003). Bioactive Novel Polyphenols from the Fruit ofManilkara zapota(Sapodilla). Journal of Natural Products, 66(7), 983-986. doi:10.1021/np020576x

Rangkadilok, N., Sitthimonchai, S., Worasuttayangkurn, L., Mahidol, C., Ruchirawat, M., & Satayavivad, J. (2007). Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food and Chemical Toxicology, 45(2), 328-336. doi:10.1016/j.fct.2006.08.022

Makris, D. P., Boskou, G., & Andrikopoulos, N. K. (2007). Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. Journal of Food Composition and Analysis, 20(2), 125-132. doi:10.1016/j.jfca.2006.04.010

Kim, J. H., Kang, N. J., Lee, B. K., Lee, K. W., & Lee, H. J. (2008). Gallic acid, a metabolite of the antioxidant propyl gallate, inhibits gap junctional intercellular communication via phosphorylation of connexin 43 and extracellular-signal-regulated kinase1/2 in rat liver epithelial cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 638(1-2), 175-183. doi:10.1016/j.mrfmmm.2007.10.005

Da Rosa, C. G., Borges, C. D., Zambiazi, R. C., Nunes, M. R., Benvenutti, E. V., Luz, S. R. da, … Rutz, J. K. (2013). Microencapsulation of gallic acid in chitosan, β-cyclodextrin and xanthan. Industrial Crops and Products, 46, 138-146. doi:10.1016/j.indcrop.2012.12.053

Neo, Y. P., Ray, S., Jin, J., Gizdavic-Nikolaidis, M., Nieuwoudt, M. K., Liu, D., & Quek, S. Y. (2013). Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system. Food Chemistry, 136(2), 1013-1021. doi:10.1016/j.foodchem.2012.09.010

Desai, K. G. H., & Jin Park, H. (2005). Recent Developments in Microencapsulation of Food Ingredients. Drying Technology, 23(7), 1361-1394. doi:10.1081/drt-200063478

Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274

Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 16(14), 1151-1170. doi:10.1002/adma.200400719

Busolo, M. A., Torres-Giner, S., Prieto, C., & Lagaron, J. M. (2019). Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine. Innovative Food Science & Emerging Technologies, 51, 12-19. doi:10.1016/j.ifset.2018.04.007

Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393

Horuz, T. İ., & Belibağlı, K. B. (2018). Nanoencapsulation of carotenoids extracted from tomato peels into zein fibers by electrospinning. Journal of the Science of Food and Agriculture, 99(2), 759-766. doi:10.1002/jsfa.9244

Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2016). Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications. Food Hydrocolloids, 55, 11-18. doi:10.1016/j.foodhyd.2015.10.026

Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768

Hosseini, S. F., Nahvi, Z., & Zandi, M. (2019). Antioxidant peptide-loaded electrospun chitosan/poly(vinyl alcohol) nanofibrous mat intended for food biopackaging purposes. Food Hydrocolloids, 89, 637-648. doi:10.1016/j.foodhyd.2018.11.033

Alehosseini, A., Gómez-Mascaraque, L. G., Martínez-Sanz, M., & López-Rubio, A. (2019). Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications. Food Hydrocolloids, 87, 758-771. doi:10.1016/j.foodhyd.2018.08.056

Aydogdu, A., Sumnu, G., & Sahin, S. (2019). Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydrate Polymers, 208, 241-250. doi:10.1016/j.carbpol.2018.12.065

Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115

Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038

Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037

Chuysinuan, P., Chimnoi, N., Techasakul, S., & Supaphol, P. (2009). Gallic Acid-Loaded Electrospun Poly(L -Lactic Acid) Fiber Mats and their Release Characteristic. Macromolecular Chemistry and Physics, 210(10), 814-822. doi:10.1002/macp.200800614

Casasola, R., Thomas, N. L., Trybala, A., & Georgiadou, S. (2014). Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer, 55(18), 4728-4737. doi:10.1016/j.polymer.2014.06.032

Aytac, Z., Kusku, S. I., Durgun, E., & Uyar, T. (2016). Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid. Materials Science and Engineering: C, 63, 231-239. doi:10.1016/j.msec.2016.02.063

Cherpinski, A., Torres‐Giner, S., Cabedo, L., Méndez, J. A., & Lagaron, J. M. (2017). Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber‐based food packaging applications. Journal of Applied Polymer Science, 135(24), 45501. doi:10.1002/app.45501

Cherpinski, A., Gozutok, M., Sasmazel, H., Torres-Giner, S., & Lagaron, J. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials, 8(7), 469. doi:10.3390/nano8070469

Lasprilla-Botero, J., Torres-Giner, S., Pardo-Figuerez, M., Álvarez-Láinez, M., & M. Lagaron, J. (2018). Superhydrophobic Bilayer Coating Based on Annealed Electrospun Ultrathin Poly(ε-caprolactone) Fibers and Electrosprayed Nanostructured Silica Microparticles for Easy Emptying Packaging Applications. Coatings, 8(5), 173. doi:10.3390/coatings8050173

Santos, N. A., Cordeiro, A. M. T. M., Damasceno, S. S., Aguiar, R. T., Rosenhaim, R., Carvalho Filho, J. R., … Souza, A. G. (2012). Commercial antioxidants and thermal stability evaluations. Fuel, 97, 638-643. doi:10.1016/j.fuel.2012.01.074

Garro^Galvez, J. M., Fechtal, M., & Riedl, B. (1996). Gallic acid as a model of tannins in condensation with formaldehyde. Thermochimica Acta, 274, 149-163. doi:10.1016/0040-6031(95)02630-4

Luzi, F., Puglia, D., Dominici, F., Fortunati, E., Giovanale, G., Balestra, G. M., & Torre, L. (2018). Effect of gallic acid and umbelliferone on thermal, mechanical, antioxidant and antimicrobial properties of poly (vinyl alcohol-co-ethylene) films. Polymer Degradation and Stability, 152, 162-176. doi:10.1016/j.polymdegradstab.2018.04.015

Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2

Wu, J., Chen, S., Ge, S., Miao, J., Li, J., & Zhang, Q. (2013). Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocolloids, 32(1), 42-51. doi:10.1016/j.foodhyd.2012.11.029

Phiriyawirut, M., & Phaechamud, T. (2012). Gallic Acid-loaded Cellulose Acetate Electrospun Nanofibers: Thermal Properties, Mechanical Properties, and Drug Release Behavior. Open Journal of Polymer Chemistry, 02(01), 21-29. doi:10.4236/ojpchem.2012.21004

Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017

Lu, Y., & Yeap Foo, L. (2001). Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chemistry, 75(2), 197-202. doi:10.1016/s0308-8146(01)00198-4

Ghitescu, R.-E., Popa, A.-M., Popa, V. I., Rossi, R. M., & Fortunato, G. (2015). Encapsulation of polyphenols into pHEMA e-spun fibers and determination of their antioxidant activities. International Journal of Pharmaceutics, 494(1), 278-287. doi:10.1016/j.ijpharm.2015.08.020

Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J.-P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954-3962. doi:10.1021/jf990146l

Han, J., Chen, T.-X., Branford-White, C. J., & Zhu, L.-M. (2009). Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications. International Journal of Pharmaceutics, 382(1-2), 215-221. doi:10.1016/j.ijpharm.2009.07.027

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem