- -

Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.contributor.author Montanes, Nestor es_ES
dc.contributor.author Lagaron, Jose M. es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Torres-Giner, Sergio es_ES
dc.date.accessioned 2020-04-17T12:51:10Z
dc.date.available 2020-04-17T12:51:10Z
dc.date.issued 2019-02-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140942
dc.description.abstract [EN] The present research reports on the development of bi- and multilayer polylactide (PLA) films by the incorporation of electrospun nanostructured PLA coatings and interlayers containing the antioxidant gallic acid (GA) at 40 wt% onto cast-extruded PLA films. To achieve the bilayer structures, submicron GA-loaded PLA fibers were applied on 200-µm cast PLA films in the form of coatings by electrospinning for 1, 2, and 3 h. For the multilayers, the cast PLA films were first coated on one side by electrospinning, then sandwiched with 10-µm PLA film on the other side, and the resultant whole structure was finally thermally post-treated at 150 ºC without pressure. Whereas the bilayer PLA films easily delaminated and lacked transparency, the multilayers showed sufficient adhesion between layers and high transparency for deposition times during electrospinning of up to 2 h. The incorporation of GA positively contributed to delaying the thermal degradation of PLA for approximately 10 ºC, as all films were thermally stable up to 345 ºC. The in vitro release studies performed in saline medium indicated that the GA released from the bilayer PLA films rapidly increased during the first 5 h of immersion while it stabilized after 45¿250 h. Interestingly, the PLA multilayers offered a high sustained release of GA, having the capacity to deliver the bioactive for over 1000 h. In addition, in the whole tested period, the GA released from the PLA films retained most of its antioxidant functionality. Thus, during the first days, the bilayer PLA films can perform as potent vehicles to deliver GA while the multilayer PLA films are able to show a sustained release of the natural antioxidant for extended periods es_ES
dc.description.sponsorship This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) program numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R and by the EU H2020 project YPACK (reference number 773872). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PLA es_ES
dc.subject GA es_ES
dc.subject Electrospinning es_ES
dc.subject Multilayer films es_ES
dc.subject Bioactive packaging es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app9030533 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Quiles-Carrillo, L.; Montanes, N.; Lagaron, JM.; Balart, R.; Torres-Giner, S. (2019). Bioactive Multilayer Polylactide Films with Controlled Release Capacity of Gallic Acid Accomplished by Incorporating Electrospun Nanostructured Coatings and Interlayers. Applied Sciences. 9(3):1-17. https://doi.org/10.3390/app9030533 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app9030533 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\377453 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Cencic, A., & Chingwaru, W. (2010). The Role of Functional Foods, Nutraceuticals, and Food Supplements in Intestinal Health. Nutrients, 2(6), 611-625. doi:10.3390/nu2060611 es_ES
dc.description.references Hasler, C. M. (2002). Functional Foods: Benefits, Concerns and Challenges—A Position Paper from the American Council on Science and Health. The Journal of Nutrition, 132(12), 3772-3781. doi:10.1093/jn/132.12.3772 es_ES
dc.description.references Fogliano, V., & Vitaglione, P. (2005). Functional foods: Planning and development. Molecular Nutrition & Food Research, 49(3), 256-262. doi:10.1002/mnfr.200400067 es_ES
dc.description.references Lopez-Rubio, A., Gavara, R., & Lagaron, J. M. (2006). Bioactive packaging: turning foods into healthier foods through biomaterials. Trends in Food Science & Technology, 17(10), 567-575. doi:10.1016/j.tifs.2006.04.012 es_ES
dc.description.references Mellinas, C., Valdés, A., Ramos, M., Burgos, N., Garrigós, M. del C., & Jiménez, A. (2015). Active edible films: Current state and future trends. Journal of Applied Polymer Science, 133(2), n/a-n/a. doi:10.1002/app.42631 es_ES
dc.description.references Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. (2016). Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 107, 333-366. doi:10.1016/j.addr.2016.03.010 es_ES
dc.description.references Lazzeri, L., Cascone, M. G., Quiriconi, S., Morabito, L., & Giusti, P. (2004). Biodegradable hollow microfibres to produce bioactive scaffolds. Polymer International, 54(1), 101-107. doi:10.1002/pi.1648 es_ES
dc.description.references Ma, J., Luo, X.-D., Protiva, P., Yang, H., Ma, C., Basile, M. J., … Kennelly, E. J. (2003). Bioactive Novel Polyphenols from the Fruit ofManilkara zapota(Sapodilla). Journal of Natural Products, 66(7), 983-986. doi:10.1021/np020576x es_ES
dc.description.references Rangkadilok, N., Sitthimonchai, S., Worasuttayangkurn, L., Mahidol, C., Ruchirawat, M., & Satayavivad, J. (2007). Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food and Chemical Toxicology, 45(2), 328-336. doi:10.1016/j.fct.2006.08.022 es_ES
dc.description.references Makris, D. P., Boskou, G., & Andrikopoulos, N. K. (2007). Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. Journal of Food Composition and Analysis, 20(2), 125-132. doi:10.1016/j.jfca.2006.04.010 es_ES
dc.description.references Kim, J. H., Kang, N. J., Lee, B. K., Lee, K. W., & Lee, H. J. (2008). Gallic acid, a metabolite of the antioxidant propyl gallate, inhibits gap junctional intercellular communication via phosphorylation of connexin 43 and extracellular-signal-regulated kinase1/2 in rat liver epithelial cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 638(1-2), 175-183. doi:10.1016/j.mrfmmm.2007.10.005 es_ES
dc.description.references Da Rosa, C. G., Borges, C. D., Zambiazi, R. C., Nunes, M. R., Benvenutti, E. V., Luz, S. R. da, … Rutz, J. K. (2013). Microencapsulation of gallic acid in chitosan, β-cyclodextrin and xanthan. Industrial Crops and Products, 46, 138-146. doi:10.1016/j.indcrop.2012.12.053 es_ES
dc.description.references Neo, Y. P., Ray, S., Jin, J., Gizdavic-Nikolaidis, M., Nieuwoudt, M. K., Liu, D., & Quek, S. Y. (2013). Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system. Food Chemistry, 136(2), 1013-1021. doi:10.1016/j.foodchem.2012.09.010 es_ES
dc.description.references Desai, K. G. H., & Jin Park, H. (2005). Recent Developments in Microencapsulation of Food Ingredients. Drying Technology, 23(7), 1361-1394. doi:10.1081/drt-200063478 es_ES
dc.description.references Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274 es_ES
dc.description.references Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 16(14), 1151-1170. doi:10.1002/adma.200400719 es_ES
dc.description.references Busolo, M. A., Torres-Giner, S., Prieto, C., & Lagaron, J. M. (2019). Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine. Innovative Food Science & Emerging Technologies, 51, 12-19. doi:10.1016/j.ifset.2018.04.007 es_ES
dc.description.references Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393 es_ES
dc.description.references Horuz, T. İ., & Belibağlı, K. B. (2018). Nanoencapsulation of carotenoids extracted from tomato peels into zein fibers by electrospinning. Journal of the Science of Food and Agriculture, 99(2), 759-766. doi:10.1002/jsfa.9244 es_ES
dc.description.references Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2016). Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications. Food Hydrocolloids, 55, 11-18. doi:10.1016/j.foodhyd.2015.10.026 es_ES
dc.description.references Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768 es_ES
dc.description.references Hosseini, S. F., Nahvi, Z., & Zandi, M. (2019). Antioxidant peptide-loaded electrospun chitosan/poly(vinyl alcohol) nanofibrous mat intended for food biopackaging purposes. Food Hydrocolloids, 89, 637-648. doi:10.1016/j.foodhyd.2018.11.033 es_ES
dc.description.references Alehosseini, A., Gómez-Mascaraque, L. G., Martínez-Sanz, M., & López-Rubio, A. (2019). Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications. Food Hydrocolloids, 87, 758-771. doi:10.1016/j.foodhyd.2018.08.056 es_ES
dc.description.references Aydogdu, A., Sumnu, G., & Sahin, S. (2019). Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydrate Polymers, 208, 241-250. doi:10.1016/j.carbpol.2018.12.065 es_ES
dc.description.references Cherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115 es_ES
dc.description.references Melendez-Rodriguez, B., Castro-Mayorga, J. L., Reis, M. A. M., Sammon, C., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2018). Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2. doi:10.3389/fsufs.2018.00038 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037 es_ES
dc.description.references Chuysinuan, P., Chimnoi, N., Techasakul, S., & Supaphol, P. (2009). Gallic Acid-Loaded Electrospun Poly(L -Lactic Acid) Fiber Mats and their Release Characteristic. Macromolecular Chemistry and Physics, 210(10), 814-822. doi:10.1002/macp.200800614 es_ES
dc.description.references Casasola, R., Thomas, N. L., Trybala, A., & Georgiadou, S. (2014). Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer, 55(18), 4728-4737. doi:10.1016/j.polymer.2014.06.032 es_ES
dc.description.references Aytac, Z., Kusku, S. I., Durgun, E., & Uyar, T. (2016). Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid. Materials Science and Engineering: C, 63, 231-239. doi:10.1016/j.msec.2016.02.063 es_ES
dc.description.references Cherpinski, A., Torres‐Giner, S., Cabedo, L., Méndez, J. A., & Lagaron, J. M. (2017). Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber‐based food packaging applications. Journal of Applied Polymer Science, 135(24), 45501. doi:10.1002/app.45501 es_ES
dc.description.references Cherpinski, A., Gozutok, M., Sasmazel, H., Torres-Giner, S., & Lagaron, J. (2018). Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials, 8(7), 469. doi:10.3390/nano8070469 es_ES
dc.description.references Lasprilla-Botero, J., Torres-Giner, S., Pardo-Figuerez, M., Álvarez-Láinez, M., & M. Lagaron, J. (2018). Superhydrophobic Bilayer Coating Based on Annealed Electrospun Ultrathin Poly(ε-caprolactone) Fibers and Electrosprayed Nanostructured Silica Microparticles for Easy Emptying Packaging Applications. Coatings, 8(5), 173. doi:10.3390/coatings8050173 es_ES
dc.description.references Santos, N. A., Cordeiro, A. M. T. M., Damasceno, S. S., Aguiar, R. T., Rosenhaim, R., Carvalho Filho, J. R., … Souza, A. G. (2012). Commercial antioxidants and thermal stability evaluations. Fuel, 97, 638-643. doi:10.1016/j.fuel.2012.01.074 es_ES
dc.description.references Garro^Galvez, J. M., Fechtal, M., & Riedl, B. (1996). Gallic acid as a model of tannins in condensation with formaldehyde. Thermochimica Acta, 274, 149-163. doi:10.1016/0040-6031(95)02630-4 es_ES
dc.description.references Luzi, F., Puglia, D., Dominici, F., Fortunati, E., Giovanale, G., Balestra, G. M., & Torre, L. (2018). Effect of gallic acid and umbelliferone on thermal, mechanical, antioxidant and antimicrobial properties of poly (vinyl alcohol-co-ethylene) films. Polymer Degradation and Stability, 152, 162-176. doi:10.1016/j.polymdegradstab.2018.04.015 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2 es_ES
dc.description.references Wu, J., Chen, S., Ge, S., Miao, J., Li, J., & Zhang, Q. (2013). Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocolloids, 32(1), 42-51. doi:10.1016/j.foodhyd.2012.11.029 es_ES
dc.description.references Phiriyawirut, M., & Phaechamud, T. (2012). Gallic Acid-loaded Cellulose Acetate Electrospun Nanofibers: Thermal Properties, Mechanical Properties, and Drug Release Behavior. Open Journal of Polymer Chemistry, 02(01), 21-29. doi:10.4236/ojpchem.2012.21004 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 es_ES
dc.description.references Lu, Y., & Yeap Foo, L. (2001). Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chemistry, 75(2), 197-202. doi:10.1016/s0308-8146(01)00198-4 es_ES
dc.description.references Ghitescu, R.-E., Popa, A.-M., Popa, V. I., Rossi, R. M., & Fortunato, G. (2015). Encapsulation of polyphenols into pHEMA e-spun fibers and determination of their antioxidant activities. International Journal of Pharmaceutics, 494(1), 278-287. doi:10.1016/j.ijpharm.2015.08.020 es_ES
dc.description.references Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J.-P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954-3962. doi:10.1021/jf990146l es_ES
dc.description.references Han, J., Chen, T.-X., Branford-White, C. J., & Zhu, L.-M. (2009). Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications. International Journal of Pharmaceutics, 382(1-2), 215-221. doi:10.1016/j.ijpharm.2009.07.027 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem