- -

Effect of blanching in water and sugar solutions on texture and microstructure of sliced carrots

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of blanching in water and sugar solutions on texture and microstructure of sliced carrots

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Neri, Lilia es_ES
dc.contributor.author Hernando Hernando, Mª Isabel es_ES
dc.contributor.author Pérez Munuera, Isabel Mª es_ES
dc.contributor.author Sacchetti, Giampiero es_ES
dc.contributor.author Pittia, Paola es_ES
dc.date.accessioned 2020-04-17T12:51:42Z
dc.date.available 2020-04-17T12:51:42Z
dc.date.issued 2011 es_ES
dc.identifier.issn 0022-1147 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140959
dc.description.abstract [EN] Thermal processing of vegetables has pronounced effects on the cell structure, often negatively affecting the final textural properties of the product. In order to study the effect of thermal processing and the protective effect of sugars on the tissue, sliced carrots were subjected to blanching treatments under different time and temperature combinations both in water and in 4% sugar solutions made of trehalose or maltose. The influence of these process conditions on mass transfer, texture, and microstructure (Cryo-scanning electron microscopy) was thus investigated. The total mass loss of all the samples blanched in water was associated to their cook value (C-100(18)) except for the overprocessed one (90 degrees C, 10 min) that showed a total mass change significantly lower due to water uptake. The use of trehalose and maltose in the blanching solution reduced the solute loss while increasing the water loss. Microstructural analysis of the differently blanched carrots showed detachments between adjacent cell walls as well as plasmolysis phenomena as the time and temperature of the thermal treatment were increased. A protective effect of both sugars on cell structures was observed mostly in the sample treated at 90 degrees C. At macroscopic level, textural changes upon blanching were observed by a penetration test. As blanching time was increased, samples processed at 75 degrees C showed a hardness increase, while those processed at 90 degrees C showed a hardness decrease. However, both trehalose and maltose did not exert significant effects on the textural properties of blanched carrots when compared with those blanched in water. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Journal of Food Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Blanching es_ES
dc.subject Carrots es_ES
dc.subject Maltose es_ES
dc.subject Microstructure es_ES
dc.subject Texture es_ES
dc.subject Trehalose es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Effect of blanching in water and sugar solutions on texture and microstructure of sliced carrots es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/j.1750-3841.2010.01906.x es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Neri, L.; Hernando Hernando, MI.; Pérez Munuera, IM.; Sacchetti, G.; Pittia, P. (2011). Effect of blanching in water and sugar solutions on texture and microstructure of sliced carrots. Journal of Food Science. 76(1):23-30. https://doi.org/10.1111/j.1750-3841.2010.01906.x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/j.1750-3841.2010.01906.x es_ES
dc.description.upvformatpinicio 23 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 76 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\206926 es_ES
dc.description.references Aktas, T., Fujii, S., Kawano, Y., & Yamamoto, S. (2007). Effects of Pretreatments of Sliced Vegetables with Trehalose on Drying Characteristics and Quality of Dried Products. Food and Bioproducts Processing, 85(3), 178-183. doi:10.1205/fbp07037 es_ES
dc.description.references Awuah, G. B., Ramaswamy, H. S., & Economides, A. (2007). Thermal processing and quality: Principles and overview. Chemical Engineering and Processing: Process Intensification, 46(6), 584-602. doi:10.1016/j.cep.2006.08.004 es_ES
dc.description.references Van Buggenhout, S., Lille, M., Messagie, I., Loey, A. V., Autio, K., & Hendrickx, M. (2005). Impact of pretreatment and freezing conditions on the microstructure of frozen carrots: Quantification and relation to texture loss. European Food Research and Technology, 222(5-6), 543-553. doi:10.1007/s00217-005-0135-6 es_ES
dc.description.references Cesàro, A., De Giacomo, O., & Sussich, F. (2008). Water interplay in trehalose polymorphism. Food Chemistry, 106(4), 1318-1328. doi:10.1016/j.foodchem.2007.01.082 es_ES
dc.description.references Colaço, C., Sen, S., Thangavelu, M., Pinder, S., & Roser, B. (1992). Extraordinary Stability of Enzymes Dried in Trehalose: Simplified Molecular Biology. Nature Biotechnology, 10(9), 1007-1011. doi:10.1038/nbt0992-1007 es_ES
dc.description.references Ferrando, M., & Spiess, W. E. . (2001). Cellular response of plant tissue during the osmotic treatment with sucrose, maltose, and trehalose solutions. Journal of Food Engineering, 49(2-3), 115-127. doi:10.1016/s0260-8774(00)00218-1 es_ES
dc.description.references FUCHIGAMI, M., HYAKUMOTO, N., & MIYAZAKI, K. (1995). Programmed Freezing Affects Texture, Pectic Composition and Electron Microscopic Structures of Carrots. Journal of Food Science, 60(1), 137-141. doi:10.1111/j.1365-2621.1995.tb05623.x es_ES
dc.description.references Galindo, F. G., Toledo, R. T., & Sjöholm, I. (2005). Tissue damage in heated carrot slices. Comparing mild hot water blanching and infrared heating. Journal of Food Engineering, 67(4), 381-385. doi:10.1016/j.jfoodeng.2004.05.004 es_ES
dc.description.references Greve, L. C., McArdle, R. N., Gohlke, J. R., & Labavitch, J. M. (1994). Impact of Heating on Carrot Firmness: Changes in Cell Wall Components. Journal of Agricultural and Food Chemistry, 42(12), 2900-2906. doi:10.1021/jf00048a048 es_ES
dc.description.references Güneş, B., & Bayindirli, A. (1993). Peroxidase and Lipoxygenase Inactivation During Blanching of Green Beans, Green Peas and Carrots. LWT - Food Science and Technology, 26(5), 406-410. doi:10.1006/fstl.1993.1080 es_ES
dc.description.references Hagerman, A. E., & Austin, P. J. (1986). Continuous spectrophotometric assay for plant pectin methyl esterase. Journal of Agricultural and Food Chemistry, 34(3), 440-444. doi:10.1021/jf00069a015 es_ES
dc.description.references Higashiyama, T. (2002). Novel functions and applications of trehalose. Pure and Applied Chemistry, 74(7), 1263-1269. doi:10.1351/pac200274071263 es_ES
dc.description.references Hincha, D. K., & Crowe, J. H. (1998). Trehalose Increases Freeze–Thaw Damage in Liposomes Containing Chloroplast Glycolipids. Cryobiology, 36(3), 245-249. doi:10.1006/cryo.1998.2074 es_ES
dc.description.references Kidmose, U., & Martens, H. J. (1999). Changes in texture, microstructure and nutritional quality of carrot slices during blanching and freezing. Journal of the Science of Food and Agriculture, 79(12), 1747-1753. doi:10.1002/(sici)1097-0010(199909)79:12<1747::aid-jsfa429>3.0.co;2-b es_ES
dc.description.references KINCAL, N. S., & KAYMAK, F. (1987). MODELLING DRY MATTER LOSSES FROM CARROTS DURING BLANCHING. Journal of Food Process Engineering, 9(3), 201-211. doi:10.1111/j.1745-4530.1987.tb00125.x es_ES
dc.description.references Llorca, E., Hernando, I., Pérez-Munuera, I., Quiles, A., Larrea, V., Fiszman, S. M., & Lluch, M. Á. (2005). Microstructural study of frozen batter-coated squid rings prepared by an innovative process without a pre-frying step. Food Hydrocolloids, 19(2), 297-302. doi:10.1016/j.foodhyd.2004.07.002 es_ES
dc.description.references Lo, C.-M., Grun, I. U., Taylor, T. A., Kramer, H., & Fernando, L. N. (2002). Blanching Effects on the Chemical Composition and the Cellular Distribution of Pectins in Carrots. Journal of Food Science, 67(9), 3321-3328. doi:10.1111/j.1365-2621.2002.tb09586.x es_ES
dc.description.references Morales-Blancas, E. F., Chandia, V. E., & Cisneros-Zevallos, L. (2002). Thermal Inactivation Kinetics of Peroxidase and Lipoxygenase from Broccoli, Green Asparagus and Carrots. Journal of Food Science, 67(1), 146-154. doi:10.1111/j.1365-2621.2002.tb11375.x es_ES
dc.description.references Murray, B. S., & Liang, H.-J. (2000). Evidence for Conformational Stabilization of β-Lactoglobulin When Dried with Trehalose. Langmuir, 16(14), 6061-6063. doi:10.1021/la990644o es_ES
dc.description.references Neri L 2010 Enzymatic inactivation and quality of semi-finished plant foods intended for freezing PhD thesis es_ES
dc.description.references Ni, L., Lin, D., & Barrett, D. M. (2005). Pectin methylesterase catalyzed firming effects on low temperature blanched vegetables. Journal of Food Engineering, 70(4), 546-556. doi:10.1016/j.jfoodeng.2004.10.009 es_ES
dc.description.references Paredes Escobar, M., Gómez Galindo, F., Wadsö, L., Ruales Nájera, J., & Sjöholm, I. (2007). Effect of long-term storage and blanching pre-treatments on the osmotic dehydration kinetics of carrots (Daucus carota L. cv. Nerac). Journal of Food Engineering, 81(2), 313-317. doi:10.1016/j.jfoodeng.2006.11.005 es_ES
dc.description.references Park, Y. S., & Huang, L. (1992). Cryoprotective activity of synthetic glycophospholipids and their interactions with trehalose. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1124(3), 241-248. doi:10.1016/0005-2760(92)90135-i es_ES
dc.description.references Phoon, P. Y., Galindo, F. G., Vicente, A., & Dejmek, P. (2008). Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. Journal of Food Engineering, 88(1), 144-148. doi:10.1016/j.jfoodeng.2007.12.016 es_ES
dc.description.references Plat, D., Ben-Shalom, N., Levi, A., Reid, D., & Goldschmidt, E. E. (1988). Degradation of pectic substances in carrots by heat treatment. Journal of Agricultural and Food Chemistry, 36(2), 362-365. doi:10.1021/jf00080a030 es_ES
dc.description.references Préstamo, G., Fuster, C., & Risueño, M. C. (1998). Effects of blanching and freezing on the structure of carrots cells and their implications for food processing. Journal of the Science of Food and Agriculture, 77(2), 223-229. doi:10.1002/(sici)1097-0010(199806)77:2<223::aid-jsfa29>3.0.co;2-2 es_ES
dc.description.references QUINTERO-RAMOS, A., BOURNE, M., BARNARD, J., GONZÁLEZ-LAREDO, R., ANZALDÚA-MORALES, A., PENSABEN-ESQUIVEL, M., & MÁRQUEZ-MELÉNDEZ, R. (2002). LOW TEMPERATURE BLANCHING OF FROZEN CARROTS WITH CALCIUM CHLORIDE SOLUTIONS AT DIFFERENT HOLDING TIMES ON TEXTURE OF FROZEN CARROTS. Journal of Food Processing and Preservation, 26(5), 361-374. doi:10.1111/j.1745-4549.2002.tb00490.x es_ES
dc.description.references Rastogi, N. K., Nguyen, L. T., & Balasubramaniam, V. M. (2008). Effect of pretreatments on carrot texture after thermal and pressure-assisted thermal processing. Journal of Food Engineering, 88(4), 541-547. doi:10.1016/j.jfoodeng.2008.03.016 es_ES
dc.description.references Rico, D., Martín-Diana, A. B., Frías, J. M., Barat, J. M., Henehan, G. T. M., & Barry-Ryan, C. (2007). Improvement in texture using calcium lactate and heat-shock treatments for stored ready-to-eat carrots. Journal of Food Engineering, 79(4), 1196-1206. doi:10.1016/j.jfoodeng.2006.04.032 es_ES
dc.description.references Sacchetti, G., Gianotti, A., & Dalla Rosa, M. (2001). Sucrose–salt combined effects on mass transfer kinetics and product acceptability. Study on apple osmotic treatments. Journal of Food Engineering, 49(2-3), 163-173. doi:10.1016/s0260-8774(00)00206-5 es_ES
dc.description.references Sanjuán, N., Hernando, I., Lluch, M. A., & Mulet, A. (2005). Effects of low temperature blanching on texture, microstructure and rehydration capacity of carrots. Journal of the Science of Food and Agriculture, 85(12), 2071-2076. doi:10.1002/jsfa.2224 es_ES
dc.description.references Sila, D. N., Duvetter, T., De Roeck, A., Verlent, I., Smout, C., Moates, G. K., … Van Loey, A. (2008). Texture changes of processed fruits and vegetables: potential use of high-pressure processing. Trends in Food Science & Technology, 19(6), 309-319. doi:10.1016/j.tifs.2007.12.007 es_ES
dc.description.references Sola-Penna, M., & Meyer-Fernandes, J. R. (1994). Protective Role of Trehalose in Thermal Denaturation of Yeast Pyrophosphatase. Zeitschrift für Naturforschung C, 49(5-6), 327-330. doi:10.1515/znc-1994-5-608 es_ES
dc.description.references Sola-Penna, M., & Meyer-Fernandes, J. R. (1998). Stabilization against Thermal Inactivation Promoted by Sugars on Enzyme Structure and Function: Why Is Trehalose More Effective Than Other Sugars? Archives of Biochemistry and Biophysics, 360(1), 10-14. doi:10.1006/abbi.1998.0906 es_ES
dc.description.references SELMAN, J. D., PRICE, P., & ABDUL-REZZAK, R. K. (2007). A study of the apparent diffusion coefficients for solute losses from carrot tissue during blanching in water. International Journal of Food Science & Technology, 18(4), 427-440. doi:10.1111/j.1365-2621.1983.tb00285.x es_ES
dc.description.references STANLEY, D. W., BOURNE, M. C., STONE, A. P., & WISMER, W. V. (1995). Low Temperature Blanching Effects on Chemistry, Firmness and Structure of Canned Green Beans and Carrots. Journal of Food Science, 60(2), 327-333. doi:10.1111/j.1365-2621.1995.tb05666.x es_ES
dc.description.references Timasheff, S. N. (1993). The Control of Protein Stability and Association by Weak Interactions with Water: How Do Solvents Affect These Processes? Annual Review of Biophysics and Biomolecular Structure, 22(1), 67-97. doi:10.1146/annurev.bb.22.060193.000435 es_ES
dc.description.references Torreggiani, D., Forni, E., Guercilena, I., Maestrelli, A., Bertolo, G., Archer, G. P., … Champion, D. (1999). Modification of glass transition temperature through carbohydrates additions: effect upon colour and anthocyanin pigment stability in frozen strawberry juices. Food Research International, 32(6), 441-446. doi:10.1016/s0963-9969(99)00106-4 es_ES
dc.description.references Vélez-Ruiz, J., Hernando, I., González-Tomás, L., Pérez-Munuera, I., Quiles, A., Tárrega, A., … Costell, E. (2005). Rheology and microstructure of custard model systems with cross-linked waxy maize starch. Flavour and Fragrance Journal, 21(1), 30-36. doi:10.1002/ffj.1698 es_ES
dc.description.references VERLINDEN, B. E., & BAERDEMAEKER, J. (1997). Modeling Low Temperature Blanched Carrot Firmness Based on Heat Induced Processes and Enzyme Activity. Journal of Food Science, 62(2), 213-219. doi:10.1111/j.1365-2621.1997.tb03971.x es_ES
dc.description.references Vu, T. S., Smout, C., Sila, D. N., LyNguyen, B., Van Loey, A. M. ., & Hendrickx, M. E. G. (2004). Effect of preheating on thermal degradation kinetics of carrot texture. Innovative Food Science & Emerging Technologies, 5(1), 37-44. doi:10.1016/j.ifset.2003.08.005 es_ES
dc.description.references ZHOU, A., BENJAKUL, S., PAN, K., GONG, J., & LIU, X. (2006). Cryoprotective effects of trehalose and sodium lactate on tilapia () surimi during frozen storage. Food Chemistry, 96(1), 96-103. doi:10.1016/j.foodchem.2005.02.013 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem