Mostrar el registro sencillo del ítem
dc.contributor.author | Neri, Lilia | es_ES |
dc.contributor.author | Hernando Hernando, Mª Isabel | es_ES |
dc.contributor.author | Pérez Munuera, Isabel Mª | es_ES |
dc.contributor.author | Sacchetti, Giampiero | es_ES |
dc.contributor.author | Pittia, Paola | es_ES |
dc.date.accessioned | 2020-04-17T12:51:42Z | |
dc.date.available | 2020-04-17T12:51:42Z | |
dc.date.issued | 2011 | es_ES |
dc.identifier.issn | 0022-1147 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140959 | |
dc.description.abstract | [EN] Thermal processing of vegetables has pronounced effects on the cell structure, often negatively affecting the final textural properties of the product. In order to study the effect of thermal processing and the protective effect of sugars on the tissue, sliced carrots were subjected to blanching treatments under different time and temperature combinations both in water and in 4% sugar solutions made of trehalose or maltose. The influence of these process conditions on mass transfer, texture, and microstructure (Cryo-scanning electron microscopy) was thus investigated. The total mass loss of all the samples blanched in water was associated to their cook value (C-100(18)) except for the overprocessed one (90 degrees C, 10 min) that showed a total mass change significantly lower due to water uptake. The use of trehalose and maltose in the blanching solution reduced the solute loss while increasing the water loss. Microstructural analysis of the differently blanched carrots showed detachments between adjacent cell walls as well as plasmolysis phenomena as the time and temperature of the thermal treatment were increased. A protective effect of both sugars on cell structures was observed mostly in the sample treated at 90 degrees C. At macroscopic level, textural changes upon blanching were observed by a penetration test. As blanching time was increased, samples processed at 75 degrees C showed a hardness increase, while those processed at 90 degrees C showed a hardness decrease. However, both trehalose and maltose did not exert significant effects on the textural properties of blanched carrots when compared with those blanched in water. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Journal of Food Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Blanching | es_ES |
dc.subject | Carrots | es_ES |
dc.subject | Maltose | es_ES |
dc.subject | Microstructure | es_ES |
dc.subject | Texture | es_ES |
dc.subject | Trehalose | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Effect of blanching in water and sugar solutions on texture and microstructure of sliced carrots | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/j.1750-3841.2010.01906.x | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Neri, L.; Hernando Hernando, MI.; Pérez Munuera, IM.; Sacchetti, G.; Pittia, P. (2011). Effect of blanching in water and sugar solutions on texture and microstructure of sliced carrots. Journal of Food Science. 76(1):23-30. https://doi.org/10.1111/j.1750-3841.2010.01906.x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/j.1750-3841.2010.01906.x | es_ES |
dc.description.upvformatpinicio | 23 | es_ES |
dc.description.upvformatpfin | 30 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 76 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\206926 | es_ES |
dc.description.references | Aktas, T., Fujii, S., Kawano, Y., & Yamamoto, S. (2007). Effects of Pretreatments of Sliced Vegetables with Trehalose on Drying Characteristics and Quality of Dried Products. Food and Bioproducts Processing, 85(3), 178-183. doi:10.1205/fbp07037 | es_ES |
dc.description.references | Awuah, G. B., Ramaswamy, H. S., & Economides, A. (2007). Thermal processing and quality: Principles and overview. Chemical Engineering and Processing: Process Intensification, 46(6), 584-602. doi:10.1016/j.cep.2006.08.004 | es_ES |
dc.description.references | Van Buggenhout, S., Lille, M., Messagie, I., Loey, A. V., Autio, K., & Hendrickx, M. (2005). Impact of pretreatment and freezing conditions on the microstructure of frozen carrots: Quantification and relation to texture loss. European Food Research and Technology, 222(5-6), 543-553. doi:10.1007/s00217-005-0135-6 | es_ES |
dc.description.references | Cesàro, A., De Giacomo, O., & Sussich, F. (2008). Water interplay in trehalose polymorphism. Food Chemistry, 106(4), 1318-1328. doi:10.1016/j.foodchem.2007.01.082 | es_ES |
dc.description.references | Colaço, C., Sen, S., Thangavelu, M., Pinder, S., & Roser, B. (1992). Extraordinary Stability of Enzymes Dried in Trehalose: Simplified Molecular Biology. Nature Biotechnology, 10(9), 1007-1011. doi:10.1038/nbt0992-1007 | es_ES |
dc.description.references | Ferrando, M., & Spiess, W. E. . (2001). Cellular response of plant tissue during the osmotic treatment with sucrose, maltose, and trehalose solutions. Journal of Food Engineering, 49(2-3), 115-127. doi:10.1016/s0260-8774(00)00218-1 | es_ES |
dc.description.references | FUCHIGAMI, M., HYAKUMOTO, N., & MIYAZAKI, K. (1995). Programmed Freezing Affects Texture, Pectic Composition and Electron Microscopic Structures of Carrots. Journal of Food Science, 60(1), 137-141. doi:10.1111/j.1365-2621.1995.tb05623.x | es_ES |
dc.description.references | Galindo, F. G., Toledo, R. T., & Sjöholm, I. (2005). Tissue damage in heated carrot slices. Comparing mild hot water blanching and infrared heating. Journal of Food Engineering, 67(4), 381-385. doi:10.1016/j.jfoodeng.2004.05.004 | es_ES |
dc.description.references | Greve, L. C., McArdle, R. N., Gohlke, J. R., & Labavitch, J. M. (1994). Impact of Heating on Carrot Firmness: Changes in Cell Wall Components. Journal of Agricultural and Food Chemistry, 42(12), 2900-2906. doi:10.1021/jf00048a048 | es_ES |
dc.description.references | Güneş, B., & Bayindirli, A. (1993). Peroxidase and Lipoxygenase Inactivation During Blanching of Green Beans, Green Peas and Carrots. LWT - Food Science and Technology, 26(5), 406-410. doi:10.1006/fstl.1993.1080 | es_ES |
dc.description.references | Hagerman, A. E., & Austin, P. J. (1986). Continuous spectrophotometric assay for plant pectin methyl esterase. Journal of Agricultural and Food Chemistry, 34(3), 440-444. doi:10.1021/jf00069a015 | es_ES |
dc.description.references | Higashiyama, T. (2002). Novel functions and applications of trehalose. Pure and Applied Chemistry, 74(7), 1263-1269. doi:10.1351/pac200274071263 | es_ES |
dc.description.references | Hincha, D. K., & Crowe, J. H. (1998). Trehalose Increases Freeze–Thaw Damage in Liposomes Containing Chloroplast Glycolipids. Cryobiology, 36(3), 245-249. doi:10.1006/cryo.1998.2074 | es_ES |
dc.description.references | Kidmose, U., & Martens, H. J. (1999). Changes in texture, microstructure and nutritional quality of carrot slices during blanching and freezing. Journal of the Science of Food and Agriculture, 79(12), 1747-1753. doi:10.1002/(sici)1097-0010(199909)79:12<1747::aid-jsfa429>3.0.co;2-b | es_ES |
dc.description.references | KINCAL, N. S., & KAYMAK, F. (1987). MODELLING DRY MATTER LOSSES FROM CARROTS DURING BLANCHING. Journal of Food Process Engineering, 9(3), 201-211. doi:10.1111/j.1745-4530.1987.tb00125.x | es_ES |
dc.description.references | Llorca, E., Hernando, I., Pérez-Munuera, I., Quiles, A., Larrea, V., Fiszman, S. M., & Lluch, M. Á. (2005). Microstructural study of frozen batter-coated squid rings prepared by an innovative process without a pre-frying step. Food Hydrocolloids, 19(2), 297-302. doi:10.1016/j.foodhyd.2004.07.002 | es_ES |
dc.description.references | Lo, C.-M., Grun, I. U., Taylor, T. A., Kramer, H., & Fernando, L. N. (2002). Blanching Effects on the Chemical Composition and the Cellular Distribution of Pectins in Carrots. Journal of Food Science, 67(9), 3321-3328. doi:10.1111/j.1365-2621.2002.tb09586.x | es_ES |
dc.description.references | Morales-Blancas, E. F., Chandia, V. E., & Cisneros-Zevallos, L. (2002). Thermal Inactivation Kinetics of Peroxidase and Lipoxygenase from Broccoli, Green Asparagus and Carrots. Journal of Food Science, 67(1), 146-154. doi:10.1111/j.1365-2621.2002.tb11375.x | es_ES |
dc.description.references | Murray, B. S., & Liang, H.-J. (2000). Evidence for Conformational Stabilization of β-Lactoglobulin When Dried with Trehalose. Langmuir, 16(14), 6061-6063. doi:10.1021/la990644o | es_ES |
dc.description.references | Neri L 2010 Enzymatic inactivation and quality of semi-finished plant foods intended for freezing PhD thesis | es_ES |
dc.description.references | Ni, L., Lin, D., & Barrett, D. M. (2005). Pectin methylesterase catalyzed firming effects on low temperature blanched vegetables. Journal of Food Engineering, 70(4), 546-556. doi:10.1016/j.jfoodeng.2004.10.009 | es_ES |
dc.description.references | Paredes Escobar, M., Gómez Galindo, F., Wadsö, L., Ruales Nájera, J., & Sjöholm, I. (2007). Effect of long-term storage and blanching pre-treatments on the osmotic dehydration kinetics of carrots (Daucus carota L. cv. Nerac). Journal of Food Engineering, 81(2), 313-317. doi:10.1016/j.jfoodeng.2006.11.005 | es_ES |
dc.description.references | Park, Y. S., & Huang, L. (1992). Cryoprotective activity of synthetic glycophospholipids and their interactions with trehalose. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1124(3), 241-248. doi:10.1016/0005-2760(92)90135-i | es_ES |
dc.description.references | Phoon, P. Y., Galindo, F. G., Vicente, A., & Dejmek, P. (2008). Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. Journal of Food Engineering, 88(1), 144-148. doi:10.1016/j.jfoodeng.2007.12.016 | es_ES |
dc.description.references | Plat, D., Ben-Shalom, N., Levi, A., Reid, D., & Goldschmidt, E. E. (1988). Degradation of pectic substances in carrots by heat treatment. Journal of Agricultural and Food Chemistry, 36(2), 362-365. doi:10.1021/jf00080a030 | es_ES |
dc.description.references | Préstamo, G., Fuster, C., & Risueño, M. C. (1998). Effects of blanching and freezing on the structure of carrots cells and their implications for food processing. Journal of the Science of Food and Agriculture, 77(2), 223-229. doi:10.1002/(sici)1097-0010(199806)77:2<223::aid-jsfa29>3.0.co;2-2 | es_ES |
dc.description.references | QUINTERO-RAMOS, A., BOURNE, M., BARNARD, J., GONZÁLEZ-LAREDO, R., ANZALDÚA-MORALES, A., PENSABEN-ESQUIVEL, M., & MÁRQUEZ-MELÉNDEZ, R. (2002). LOW TEMPERATURE BLANCHING OF FROZEN CARROTS WITH CALCIUM CHLORIDE SOLUTIONS AT DIFFERENT HOLDING TIMES ON TEXTURE OF FROZEN CARROTS. Journal of Food Processing and Preservation, 26(5), 361-374. doi:10.1111/j.1745-4549.2002.tb00490.x | es_ES |
dc.description.references | Rastogi, N. K., Nguyen, L. T., & Balasubramaniam, V. M. (2008). Effect of pretreatments on carrot texture after thermal and pressure-assisted thermal processing. Journal of Food Engineering, 88(4), 541-547. doi:10.1016/j.jfoodeng.2008.03.016 | es_ES |
dc.description.references | Rico, D., Martín-Diana, A. B., Frías, J. M., Barat, J. M., Henehan, G. T. M., & Barry-Ryan, C. (2007). Improvement in texture using calcium lactate and heat-shock treatments for stored ready-to-eat carrots. Journal of Food Engineering, 79(4), 1196-1206. doi:10.1016/j.jfoodeng.2006.04.032 | es_ES |
dc.description.references | Sacchetti, G., Gianotti, A., & Dalla Rosa, M. (2001). Sucrose–salt combined effects on mass transfer kinetics and product acceptability. Study on apple osmotic treatments. Journal of Food Engineering, 49(2-3), 163-173. doi:10.1016/s0260-8774(00)00206-5 | es_ES |
dc.description.references | Sanjuán, N., Hernando, I., Lluch, M. A., & Mulet, A. (2005). Effects of low temperature blanching on texture, microstructure and rehydration capacity of carrots. Journal of the Science of Food and Agriculture, 85(12), 2071-2076. doi:10.1002/jsfa.2224 | es_ES |
dc.description.references | Sila, D. N., Duvetter, T., De Roeck, A., Verlent, I., Smout, C., Moates, G. K., … Van Loey, A. (2008). Texture changes of processed fruits and vegetables: potential use of high-pressure processing. Trends in Food Science & Technology, 19(6), 309-319. doi:10.1016/j.tifs.2007.12.007 | es_ES |
dc.description.references | Sola-Penna, M., & Meyer-Fernandes, J. R. (1994). Protective Role of Trehalose in Thermal Denaturation of Yeast Pyrophosphatase. Zeitschrift für Naturforschung C, 49(5-6), 327-330. doi:10.1515/znc-1994-5-608 | es_ES |
dc.description.references | Sola-Penna, M., & Meyer-Fernandes, J. R. (1998). Stabilization against Thermal Inactivation Promoted by Sugars on Enzyme Structure and Function: Why Is Trehalose More Effective Than Other Sugars? Archives of Biochemistry and Biophysics, 360(1), 10-14. doi:10.1006/abbi.1998.0906 | es_ES |
dc.description.references | SELMAN, J. D., PRICE, P., & ABDUL-REZZAK, R. K. (2007). A study of the apparent diffusion coefficients for solute losses from carrot tissue during blanching in water. International Journal of Food Science & Technology, 18(4), 427-440. doi:10.1111/j.1365-2621.1983.tb00285.x | es_ES |
dc.description.references | STANLEY, D. W., BOURNE, M. C., STONE, A. P., & WISMER, W. V. (1995). Low Temperature Blanching Effects on Chemistry, Firmness and Structure of Canned Green Beans and Carrots. Journal of Food Science, 60(2), 327-333. doi:10.1111/j.1365-2621.1995.tb05666.x | es_ES |
dc.description.references | Timasheff, S. N. (1993). The Control of Protein Stability and Association by Weak Interactions with Water: How Do Solvents Affect These Processes? Annual Review of Biophysics and Biomolecular Structure, 22(1), 67-97. doi:10.1146/annurev.bb.22.060193.000435 | es_ES |
dc.description.references | Torreggiani, D., Forni, E., Guercilena, I., Maestrelli, A., Bertolo, G., Archer, G. P., … Champion, D. (1999). Modification of glass transition temperature through carbohydrates additions: effect upon colour and anthocyanin pigment stability in frozen strawberry juices. Food Research International, 32(6), 441-446. doi:10.1016/s0963-9969(99)00106-4 | es_ES |
dc.description.references | Vélez-Ruiz, J., Hernando, I., González-Tomás, L., Pérez-Munuera, I., Quiles, A., Tárrega, A., … Costell, E. (2005). Rheology and microstructure of custard model systems with cross-linked waxy maize starch. Flavour and Fragrance Journal, 21(1), 30-36. doi:10.1002/ffj.1698 | es_ES |
dc.description.references | VERLINDEN, B. E., & BAERDEMAEKER, J. (1997). Modeling Low Temperature Blanched Carrot Firmness Based on Heat Induced Processes and Enzyme Activity. Journal of Food Science, 62(2), 213-219. doi:10.1111/j.1365-2621.1997.tb03971.x | es_ES |
dc.description.references | Vu, T. S., Smout, C., Sila, D. N., LyNguyen, B., Van Loey, A. M. ., & Hendrickx, M. E. G. (2004). Effect of preheating on thermal degradation kinetics of carrot texture. Innovative Food Science & Emerging Technologies, 5(1), 37-44. doi:10.1016/j.ifset.2003.08.005 | es_ES |
dc.description.references | ZHOU, A., BENJAKUL, S., PAN, K., GONG, J., & LIU, X. (2006). Cryoprotective effects of trehalose and sodium lactate on tilapia () surimi during frozen storage. Food Chemistry, 96(1), 96-103. doi:10.1016/j.foodchem.2005.02.013 | es_ES |