- -

Acoustic Localization of Bragg Peak Proton Beams for Hadrontherapy Monitoring

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Acoustic Localization of Bragg Peak Proton Beams for Hadrontherapy Monitoring

Show full item record

Otero-Vega, JE.; Felis-Enguix, I.; Ardid Ramírez, M.; Herrero Debón, A. (2019). Acoustic Localization of Bragg Peak Proton Beams for Hadrontherapy Monitoring. Sensors. 19(9):1-13. https://doi.org/10.3390/s19091971

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140962

Files in this item

Item Metadata

Title: Acoustic Localization of Bragg Peak Proton Beams for Hadrontherapy Monitoring
Author: Otero-Vega, Jorge Enrique Felis-Enguix, Iván Ardid Ramírez, Miguel Herrero Debón, Alicia
UPV Unit: Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] Hadrontherapy makes it possible to deliver high doses of energy to cancerous tumors by using the large energy deposition in the Bragg-peak. However, uncertainties in the patient positioning and/or in the anatomical ...[+]
Subjects: Hadrontherapy , Acoustic localization , Bragg peak , Thermoacoustic , Piezoelectric ceramic
Copyrigths: Reconocimiento (by)
Source:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s19091971
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/s19091971
Project ID:
info:eu-repo/grantAgreement/MINECO//FPA2015-65150-C3-2-P/ES/PARTICIPACION DE LA UPV EN ANTARES Y KM3NET-ARCA%2FORCA/
Thanks:
This research was funded by the Spanish Agencia Estatal de Investigacion, grant number FPA2015-65150-C3-2-P (MINECO/FEDER).
Type: Artículo

References

Kundu, T. (2014). Acoustic source localization. Ultrasonics, 54(1), 25-38. doi:10.1016/j.ultras.2013.06.009

Bortfeld, T. (1997). An analytical approximation of the Bragg curve for therapeutic proton beams. Medical Physics, 24(12), 2024-2033. doi:10.1118/1.598116

Ahmad, M., Xiang, L., Yousefi, S., & Xing, L. (2015). Theoretical detection threshold of the proton-acoustic range verification technique. Medical Physics, 42(10), 5735-5744. doi:10.1118/1.4929939 [+]
Kundu, T. (2014). Acoustic source localization. Ultrasonics, 54(1), 25-38. doi:10.1016/j.ultras.2013.06.009

Bortfeld, T. (1997). An analytical approximation of the Bragg curve for therapeutic proton beams. Medical Physics, 24(12), 2024-2033. doi:10.1118/1.598116

Ahmad, M., Xiang, L., Yousefi, S., & Xing, L. (2015). Theoretical detection threshold of the proton-acoustic range verification technique. Medical Physics, 42(10), 5735-5744. doi:10.1118/1.4929939

Knapp, C., & Carter, G. (1976). The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(4), 320-327. doi:10.1109/tassp.1976.1162830

Adrián-Martínez, S., Bou-Cabo, M., Felis, I., Llorens, C. D., Martínez-Mora, J. A., Saldaña, M., & Ardid, M. (2015). Acoustic Signal Detection Through the Cross-Correlation Method in Experiments with Different Signal to Noise Ratio and Reverberation Conditions. Lecture Notes in Computer Science, 66-79. doi:10.1007/978-3-662-46338-3_7

Felis, I., Martínez-Mora, J., & Ardid, M. (2016). Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors. Sensors, 16(6), 860. doi:10.3390/s16060860

Bragg, W. H., & Kleeman, R. (1905). XXXIX. On the α particles of radium, and their loss of range in passing through various atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(57), 318-340. doi:10.1080/14786440509463378

Janni, J. F. (1982). Energy loss, range, path length, time-of-flight, straggling, multiple scattering, and nuclear interaction probability. Atomic Data and Nuclear Data Tables, 27(2-3), 147-339. doi:10.1016/0092-640x(82)90004-3

Jones, K. C., Seghal, C. M., & Avery, S. (2016). How proton pulse characteristics influence protoacoustic determination of proton-beam range: simulation studies. Physics in Medicine and Biology, 61(6), 2213-2242. doi:10.1088/0031-9155/61/6/2213

Lai, H. M., & Young, K. (1982). Theory of the pulsed optoacoustic technique. The Journal of the Acoustical Society of America, 72(6), 2000-2007. doi:10.1121/1.388631

Sigrist, M. W. (1986). Laser generation of acoustic waves in liquids and gases. Journal of Applied Physics, 60(7), R83-R122. doi:10.1063/1.337089

Tam, A. C. (1986). Applications of photoacoustic sensing techniques. Reviews of Modern Physics, 58(2), 381-431. doi:10.1103/revmodphys.58.381

Xiang, L., Han, B., Carpenter, C., Pratx, G., Kuang, Y., & Xing, L. (2012). X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator. Medical Physics, 40(1), 010701. doi:10.1118/1.4771935

Assmann, W., Kellnberger, S., Reinhardt, S., Lehrack, S., Edlich, A., Thirolf, P. G., … Parodi, K. (2015). Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy. Medical Physics, 42(2), 567-574. doi:10.1118/1.4905047

De Bonis, G. (2009). Acoustic signals from proton beam interaction in water—Comparing experimental data and Monte Carlo simulation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 604(1-2), S199-S202. doi:10.1016/j.nima.2009.03.072

Kraan, A. C., Battistoni, G., Belcari, N., Camarlinghi, N., Cirrone, G. A. P., Cuttone, G., … Rosso, V. (2014). Proton range monitoring with in-beam PET: Monte Carlo activity predictions and comparison with cyclotron data. Physica Medica, 30(5), 559-569. doi:10.1016/j.ejmp.2014.04.003

Patch, S. K., Hoff, D. E. M., Webb, T. B., Sobotka, L. G., & Zhao, T. (2017). Two-stage ionoacoustic range verification leveraging Monte Carlo and acoustic simulations to stably account for tissue inhomogeneity and accelerator-specific time structure - A simulation study. Medical Physics, 45(2), 783-793. doi:10.1002/mp.12681

Lehrack, S., Assmann, W., Bertrand, D., Henrotin, S., Herault, J., Heymans, V., … Parodi, K. (2017). Submillimeter ionoacoustic range determination for protons in water at a clinical synchrocyclotron. Physics in Medicine & Biology, 62(17), L20-L30. doi:10.1088/1361-6560/aa81f8

Hickling, S., Lei, H., Hobson, M., Léger, P., Wang, X., & El Naqa, I. (2017). Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications. Medical Physics, 44(2), 608-617. doi:10.1002/mp.12039

Ardid, M., Felis, I., Martínez-Mora, J. A., & Otero, J. (2017). Optimization of Dimensions of Cylindrical Piezoceramics as Radio-Clean Low Frequency Acoustic Sensors. Journal of Sensors, 2017, 1-8. doi:10.1155/2017/8179672

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record