- -

Acoustic Localization of Bragg Peak Proton Beams for Hadrontherapy Monitoring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Acoustic Localization of Bragg Peak Proton Beams for Hadrontherapy Monitoring

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Otero-Vega, Jorge Enrique es_ES
dc.contributor.author Felis-Enguix, Iván es_ES
dc.contributor.author Ardid Ramírez, Miguel es_ES
dc.contributor.author Herrero Debón, Alicia es_ES
dc.date.accessioned 2020-04-17T12:51:47Z
dc.date.available 2020-04-17T12:51:47Z
dc.date.issued 2019-05-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140962
dc.description.abstract [EN] Hadrontherapy makes it possible to deliver high doses of energy to cancerous tumors by using the large energy deposition in the Bragg-peak. However, uncertainties in the patient positioning and/or in the anatomical parameters can cause distortions in the calculation of the dose distribution. In order to maximize the effectiveness of heavy particle treatments, an accurate monitoring system of the deposited dose depending on the energy, beam time, and spot size is necessary. The localized deposition of this energy leads to the generation of a thermoacoustic pulse that can be detected using acoustic technologies. This article presents different experimental and simulation studies of the acoustic localization of thermoacoustic pulses captured with a set of sensors around the sample. In addition, numerical simulations have been done where thermo-acoustic pulses are emitted for the specific case of a proton beam of 100 MeV. es_ES
dc.description.sponsorship This research was funded by the Spanish Agencia Estatal de Investigacion, grant number FPA2015-65150-C3-2-P (MINECO/FEDER). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Hadrontherapy es_ES
dc.subject Acoustic localization es_ES
dc.subject Bragg peak es_ES
dc.subject Thermoacoustic es_ES
dc.subject Piezoelectric ceramic es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Acoustic Localization of Bragg Peak Proton Beams for Hadrontherapy Monitoring es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19091971 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FPA2015-65150-C3-2-P/ES/PARTICIPACION DE LA UPV EN ANTARES Y KM3NET-ARCA%2FORCA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Otero-Vega, JE.; Felis-Enguix, I.; Ardid Ramírez, M.; Herrero Debón, A. (2019). Acoustic Localization of Bragg Peak Proton Beams for Hadrontherapy Monitoring. Sensors. 19(9):1-13. https://doi.org/10.3390/s19091971 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19091971 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.relation.pasarela S\386938 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kundu, T. (2014). Acoustic source localization. Ultrasonics, 54(1), 25-38. doi:10.1016/j.ultras.2013.06.009 es_ES
dc.description.references Bortfeld, T. (1997). An analytical approximation of the Bragg curve for therapeutic proton beams. Medical Physics, 24(12), 2024-2033. doi:10.1118/1.598116 es_ES
dc.description.references Ahmad, M., Xiang, L., Yousefi, S., & Xing, L. (2015). Theoretical detection threshold of the proton-acoustic range verification technique. Medical Physics, 42(10), 5735-5744. doi:10.1118/1.4929939 es_ES
dc.description.references Knapp, C., & Carter, G. (1976). The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(4), 320-327. doi:10.1109/tassp.1976.1162830 es_ES
dc.description.references Adrián-Martínez, S., Bou-Cabo, M., Felis, I., Llorens, C. D., Martínez-Mora, J. A., Saldaña, M., & Ardid, M. (2015). Acoustic Signal Detection Through the Cross-Correlation Method in Experiments with Different Signal to Noise Ratio and Reverberation Conditions. Lecture Notes in Computer Science, 66-79. doi:10.1007/978-3-662-46338-3_7 es_ES
dc.description.references Felis, I., Martínez-Mora, J., & Ardid, M. (2016). Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors. Sensors, 16(6), 860. doi:10.3390/s16060860 es_ES
dc.description.references Bragg, W. H., & Kleeman, R. (1905). XXXIX. On the α particles of radium, and their loss of range in passing through various atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(57), 318-340. doi:10.1080/14786440509463378 es_ES
dc.description.references Janni, J. F. (1982). Energy loss, range, path length, time-of-flight, straggling, multiple scattering, and nuclear interaction probability. Atomic Data and Nuclear Data Tables, 27(2-3), 147-339. doi:10.1016/0092-640x(82)90004-3 es_ES
dc.description.references Jones, K. C., Seghal, C. M., & Avery, S. (2016). How proton pulse characteristics influence protoacoustic determination of proton-beam range: simulation studies. Physics in Medicine and Biology, 61(6), 2213-2242. doi:10.1088/0031-9155/61/6/2213 es_ES
dc.description.references Lai, H. M., & Young, K. (1982). Theory of the pulsed optoacoustic technique. The Journal of the Acoustical Society of America, 72(6), 2000-2007. doi:10.1121/1.388631 es_ES
dc.description.references Sigrist, M. W. (1986). Laser generation of acoustic waves in liquids and gases. Journal of Applied Physics, 60(7), R83-R122. doi:10.1063/1.337089 es_ES
dc.description.references Tam, A. C. (1986). Applications of photoacoustic sensing techniques. Reviews of Modern Physics, 58(2), 381-431. doi:10.1103/revmodphys.58.381 es_ES
dc.description.references Xiang, L., Han, B., Carpenter, C., Pratx, G., Kuang, Y., & Xing, L. (2012). X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator. Medical Physics, 40(1), 010701. doi:10.1118/1.4771935 es_ES
dc.description.references Assmann, W., Kellnberger, S., Reinhardt, S., Lehrack, S., Edlich, A., Thirolf, P. G., … Parodi, K. (2015). Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy. Medical Physics, 42(2), 567-574. doi:10.1118/1.4905047 es_ES
dc.description.references De Bonis, G. (2009). Acoustic signals from proton beam interaction in water—Comparing experimental data and Monte Carlo simulation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 604(1-2), S199-S202. doi:10.1016/j.nima.2009.03.072 es_ES
dc.description.references Kraan, A. C., Battistoni, G., Belcari, N., Camarlinghi, N., Cirrone, G. A. P., Cuttone, G., … Rosso, V. (2014). Proton range monitoring with in-beam PET: Monte Carlo activity predictions and comparison with cyclotron data. Physica Medica, 30(5), 559-569. doi:10.1016/j.ejmp.2014.04.003 es_ES
dc.description.references Patch, S. K., Hoff, D. E. M., Webb, T. B., Sobotka, L. G., & Zhao, T. (2017). Two-stage ionoacoustic range verification leveraging Monte Carlo and acoustic simulations to stably account for tissue inhomogeneity and accelerator-specific time structure - A simulation study. Medical Physics, 45(2), 783-793. doi:10.1002/mp.12681 es_ES
dc.description.references Lehrack, S., Assmann, W., Bertrand, D., Henrotin, S., Herault, J., Heymans, V., … Parodi, K. (2017). Submillimeter ionoacoustic range determination for protons in water at a clinical synchrocyclotron. Physics in Medicine & Biology, 62(17), L20-L30. doi:10.1088/1361-6560/aa81f8 es_ES
dc.description.references Hickling, S., Lei, H., Hobson, M., Léger, P., Wang, X., & El Naqa, I. (2017). Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications. Medical Physics, 44(2), 608-617. doi:10.1002/mp.12039 es_ES
dc.description.references Ardid, M., Felis, I., Martínez-Mora, J. A., & Otero, J. (2017). Optimization of Dimensions of Cylindrical Piezoceramics as Radio-Clean Low Frequency Acoustic Sensors. Journal of Sensors, 2017, 1-8. doi:10.1155/2017/8179672 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem