Mostrar el registro sencillo del ítem
dc.contributor.author | Ortega, J. M. | es_ES |
dc.contributor.author | Cabeza, Marta | es_ES |
dc.contributor.author | Tenza-Abril, Antonio José | es_ES |
dc.contributor.author | Real-Herraiz, Teresa Pilar | es_ES |
dc.contributor.author | Climent, Miguel Ángel | es_ES |
dc.contributor.author | Sanchez, Isidro | es_ES |
dc.date.accessioned | 2020-04-17T12:51:49Z | |
dc.date.available | 2020-04-17T12:51:49Z | |
dc.date.issued | 2019-03-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140963 | |
dc.description.abstract | [EN] Recently, there has been a great effort to incorporate industrial waste into cement-based materials to reach a more sustainable cement industry. In this regard, the Bayer process of obtaining alumina from bauxite generates huge amounts of waste called red mud. Few research articles have pointed out the possibility that red mud has pozzolanic activity. In view of that, the objective of this research is to analyse the short-term effects in the pore structure, mechanical performance and durability of mortars which incorporate up to 20% of red mud as a clinker replacement. As a reference, ordinary Portland cement and fly ash Portland cement mortars were also studied. The microstructure was characterised through mercury intrusion porosimetry and non-destructive impedance spectroscopy, which has not previously been used for studying the pore network evolution of red mud cement-based materials. The possible pozzolanic activity of red mud has been checked using differential scanning calorimetry. The non-steady state chloride migration coefficient and the mechanical properties were studied too. According to the results obtained, the addition of red mud entailed a greater microstructure refinement of the mortar, did not worsen the resistance against chloride ingress and reduced the compressive strength compared to control binders. | es_ES |
dc.description.sponsorship | Part of this research was funded by the Spanish Agencia Estatal de Investigacion (grant code BIA2016-80982-R) and by the European Regional Development Fund (grant code BIA2016-80982-R). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Sustainability | es_ES |
dc.subject | Red mud | es_ES |
dc.subject | Mcrostructure | es_ES |
dc.subject | Durability | es_ES |
dc.subject | Chloride ingress resistance | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Impedance spectroscopy | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.title | Effects of Red Mud Addition in the Microstructure, Durability and Mechanical Performance of Cement Mortars | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app9050984 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2016-80982-R/ES/APLICACION DE TECNICAS ULTRASONICAS NO LINEALES A LA DETECCION DE LA FISURACION EN HORMIGON/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.description.bibliographicCitation | Ortega, JM.; Cabeza, M.; Tenza-Abril, AJ.; Real-Herraiz, TP.; Climent, MÁ.; Sanchez, I. (2019). Effects of Red Mud Addition in the Microstructure, Durability and Mechanical Performance of Cement Mortars. Applied Sciences. 9(5):1-16. https://doi.org/10.3390/app9050984 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app9050984 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\406026 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Ayres, R. U., Holmberg, J., & Andersson, B. (2001). Materials and the Global Environment: Waste Mining in the 21st Century. MRS Bulletin, 26(6), 477-480. doi:10.1557/mrs2001.119 | es_ES |
dc.description.references | Hind, A. R., Bhargava, S. K., & Grocott, S. C. (1999). The surface chemistry of Bayer process solids: a review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146(1-3), 359-374. doi:10.1016/s0927-7757(98)00798-5 | es_ES |
dc.description.references | Tsakiridis, P. E., Agatzini-Leonardou, S., & Oustadakis, P. (2004). Red mud addition in the raw meal for the production of Portland cement clinker. Journal of Hazardous Materials, 116(1-2), 103-110. doi:10.1016/j.jhazmat.2004.08.002 | es_ES |
dc.description.references | Cengeloglu, Y., Tor, A., Ersoz, M., & Arslan, G. (2006). Removal of nitrate from aqueous solution by using red mud. Separation and Purification Technology, 51(3), 374-378. doi:10.1016/j.seppur.2006.02.020 | es_ES |
dc.description.references | Kalkan, E. (2006). Utilization of red mud as a stabilization material for the preparation of clay liners. Engineering Geology, 87(3-4), 220-229. doi:10.1016/j.enggeo.2006.07.002 | es_ES |
dc.description.references | Sushil, S., & Batra, V. S. (2008). Catalytic applications of red mud, an aluminium industry waste: A review. Applied Catalysis B: Environmental, 81(1-2), 64-77. doi:10.1016/j.apcatb.2007.12.002 | es_ES |
dc.description.references | Singh, M., Upadhayay, S. N., & Prasad, P. M. (1997). PREPARATION OF IRON RICH CEMENTS USING RED MUD. Cement and Concrete Research, 27(7), 1037-1046. doi:10.1016/s0008-8846(97)00101-4 | es_ES |
dc.description.references | Pontikes, Y., Rathossi, C., Nikolopoulos, P., Angelopoulos, G. N., Jayaseelan, D. D., & Lee, W. E. (2009). Effect of firing temperature and atmosphere on sintering of ceramics made from Bayer process bauxite residue. Ceramics International, 35(1), 401-407. doi:10.1016/j.ceramint.2007.11.013 | es_ES |
dc.description.references | Kavas, T. (2006). Use of boron waste as a fluxing agent in production of red mud brick. Building and Environment, 41(12), 1779-1783. doi:10.1016/j.buildenv.2005.07.019 | es_ES |
dc.description.references | Krivenko, P., Kovalchuk, O., Pasko, A., Croymans, T., Hult, M., Lutter, G., … Schroeyers, W. (2017). Development of alkali activated cements and concrete mixture design with high volumes of red mud. Construction and Building Materials, 151, 819-826. doi:10.1016/j.conbuildmat.2017.06.031 | es_ES |
dc.description.references | Demirboğa, R. (2007). Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Building and Environment, 42(7), 2467-2471. doi:10.1016/j.buildenv.2006.06.010 | es_ES |
dc.description.references | Glinicki, M., Jóźwiak-Niedźwiedzka, D., Gibas, K., & Dąbrowski, M. (2016). Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures. Materials, 9(1), 18. doi:10.3390/ma9010018 | es_ES |
dc.description.references | Williams, M., Ortega, J., Sánchez, I., Cabeza, M., & Climent, M. (2017). Non-Destructive Study of the Microstructural Effects of Sodium and Magnesium Sulphate Attack on Mortars Containing Silica Fume Using Impedance Spectroscopy. Applied Sciences, 7(7), 648. doi:10.3390/app7070648 | es_ES |
dc.description.references | Bijen, J. (1996). Benefits of slag and fly ash. Construction and Building Materials, 10(5), 309-314. doi:10.1016/0950-0618(95)00014-3 | es_ES |
dc.description.references | Bouikni, A., Swamy, R. N., & Bali, A. (2009). Durability properties of concrete containing 50% and 65% slag. Construction and Building Materials, 23(8), 2836-2845. doi:10.1016/j.conbuildmat.2009.02.040 | es_ES |
dc.description.references | Ortega, J. M., Pastor, J. L., Albaladejo, A., Sánchez, I., & Climent, M. A. (2014). Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications. Materiales de Construcción, 64(313), e003. doi:10.3989/mc.2014.04912 | es_ES |
dc.description.references | Coppola, L., Bellezze, T., Belli, A., Bignozzi, M. C., Bolzoni, F., Brenna, A., … Caputo, D. (2018). Binders alternative to Portland cement and waste management for sustainable construction – Part 2. Journal of Applied Biomaterials & Functional Materials, 16(4), 207-221. doi:10.1177/2280800018782852 | es_ES |
dc.description.references | Coppola, L., Bellezze, T., Belli, A., Bignozzi, M. C., Bolzoni, F., Brenna, A., … Caputo, D. (2018). Binders alternative to Portland cement and waste management for sustainable construction—part 1. Journal of Applied Biomaterials & Functional Materials, 16(3), 186-202. doi:10.1177/2280800018782845 | es_ES |
dc.description.references | Liu, X., Zhang, N., Sun, H., Zhang, J., & Li, L. (2011). Structural investigation relating to the cementitious activity of bauxite residue — Red mud. Cement and Concrete Research, 41(8), 847-853. doi:10.1016/j.cemconres.2011.04.004 | es_ES |
dc.description.references | Manfroi, E. P., Cheriaf, M., & Rocha, J. C. (2014). Microstructure, mineralogy and environmental evaluation of cementitious composites produced with red mud waste. Construction and Building Materials, 67, 29-36. doi:10.1016/j.conbuildmat.2013.10.031 | es_ES |
dc.description.references | Ribeiro, D. V., Labrincha, J. A., & Morelli, M. R. (2012). Effect of the addition of red mud on the corrosion parameters of reinforced concrete. Cement and Concrete Research, 42(1), 124-133. doi:10.1016/j.cemconres.2011.09.002 | es_ES |
dc.description.references | Abreu, C. M., Freire, L., Nóvoa, X. R., Pena, G., & Pérez, M. C. (2009). Estudio comparativo del comportamiento electroquímico del hierro en medio alcalino en presencia de lodos rojos y lodos grises. Efecto del Al3+. Revista de Metalurgia, 45(1), 5-13. doi:10.3989/revmetalm.0672 | es_ES |
dc.description.references | Díaz, B., Freire, L., Merino, P., Nóvoa, X. R., & Pérez, M. C. (2008). The effect of red mud in the electrochemical behaviour of carbon steel embedded in mortar. Revista de Metalurgia, 44(3). doi:10.3989/revmetalm.2008.v44.i3.113 | es_ES |
dc.description.references | Collazo, A., Cristóbal, M., Nóvoa, X., Pena, G., & Pérez, M. (2006). Electrochemical Impedance Spectroscopy as a Tool for Studying Steel Corrosion Inhibition in Simulated Concrete Environments—Red Mud Used as Rebar Corrosion Inhibitor. Journal of ASTM International, 3(2), 11785. doi:10.1520/jai11785 | es_ES |
dc.description.references | Díaz, B., Freire, L., Nóvoa, X. R., & Pérez, M. C. (2015). Chloride and CO2 transport in cement paste containing red mud. Cement and Concrete Composites, 62, 178-186. doi:10.1016/j.cemconcomp.2015.02.011 | es_ES |
dc.description.references | Tang, W. C., Wang, Z., Liu, Y., & Cui, H. Z. (2018). Influence of red mud on fresh and hardened properties of self-compacting concrete. Construction and Building Materials, 178, 288-300. doi:10.1016/j.conbuildmat.2018.05.171 | es_ES |
dc.description.references | Liu, R., & Poon, C. (2016). Effects of red mud on properties of self-compacting mortar. Journal of Cleaner Production, 135, 1170-1178. doi:10.1016/j.jclepro.2016.07.052 | es_ES |
dc.description.references | Lemougna, P. N., Wang, K., Tang, Q., & Cui, X. (2017). Study on the development of inorganic polymers from red mud and slag system: Application in mortar and lightweight materials. Construction and Building Materials, 156, 486-495. doi:10.1016/j.conbuildmat.2017.09.015 | es_ES |
dc.description.references | Nikbin, I. M., Aliaghazadeh, M., Sh Charkhtab, & Fathollahpour, A. (2018). Environmental impacts and mechanical properties of lightweight concrete containing bauxite residue (red mud). Journal of Cleaner Production, 172, 2683-2694. doi:10.1016/j.jclepro.2017.11.143 | es_ES |
dc.description.references | Baroghel-Bouny, V. (2007). Water vapour sorption experiments on hardened cementitious materials. Cement and Concrete Research, 37(3), 414-437. doi:10.1016/j.cemconres.2006.11.019 | es_ES |
dc.description.references | Pastor, J. L., Ortega, J. M., Flor, M., López, M. P., Sánchez, I., & Climent, M. A. (2016). Microstructure and durability of fly ash cement grouts for micropiles. Construction and Building Materials, 117, 47-57. doi:10.1016/j.conbuildmat.2016.04.154 | es_ES |
dc.description.references | Ortega, J. M., Letelier, V., Solas, C., Moriconi, G., Climent, M. Á., & Sánchez, I. (2018). Long-term effects of waste brick powder addition in the microstructure and service properties of mortars. Construction and Building Materials, 182, 691-702. doi:10.1016/j.conbuildmat.2018.06.161 | es_ES |
dc.description.references | Ortega, J., Letelier, V., Solas, C., Miró, M., Moriconi, G., Climent, M., & Sánchez, I. (2018). Influence of Waste Glass Powder Addition on the Pore Structure and Service Properties of Cement Mortars. Sustainability, 10(3), 842. doi:10.3390/su10030842 | es_ES |
dc.description.references | Ortega, J., Esteban, M., Rodríguez, R., Pastor, J., Ibanco, F., Sánchez, I., & Climent, M. (2017). Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium. Materials, 10(8), 890. doi:10.3390/ma10080890 | es_ES |
dc.description.references | Collazo, A., Fernández, D., Izquierdo, M., Nóvoa, X. R., & Pérez, C. (2005). Evaluation of red mud as surface treatment for carbon steel prior painting. Progress in Organic Coatings, 52(4), 351-358. doi:10.1016/j.porgcoat.2004.06.008 | es_ES |
dc.description.references | Diamond, S. (1999). Aspects of concrete porosity revisited. Cement and Concrete Research, 29(8), 1181-1188. doi:10.1016/s0008-8846(99)00122-2 | es_ES |
dc.description.references | Diamond, S. (2000). Mercury porosimetry. Cement and Concrete Research, 30(10), 1517-1525. doi:10.1016/s0008-8846(00)00370-7 | es_ES |
dc.description.references | Cabeza, M., Merino, P., Miranda, A., Nóvoa, X. R., & Sanchez, I. (2002). Impedance spectroscopy study of hardened Portland cement paste. Cement and Concrete Research, 32(6), 881-891. doi:10.1016/s0008-8846(02)00720-2 | es_ES |
dc.description.references | Sánchez, I., Nóvoa, X. R., de Vera, G., & Climent, M. A. (2008). Microstructural modifications in Portland cement concrete due to forced ionic migration tests. Study by impedance spectroscopy. Cement and Concrete Research, 38(7), 1015-1025. doi:10.1016/j.cemconres.2008.03.012 | es_ES |
dc.description.references | Ortega Álvarez, J., Esteban Pérez, M., Rodríguez Escribano, R., Pastor Navarro, J., & Sánchez Martín, I. (2016). Microstructural Effects of Sulphate Attack in Sustainable Grouts for Micropiles. Materials, 9(11), 905. doi:10.3390/ma9110905 | es_ES |
dc.description.references | Zornoza, E., Garcés, P., Payá, J., & Climent, M. A. (2009). Improvement of the chloride ingress resistance of OPC mortars by using spent cracking catalyst. Cement and Concrete Research, 39(2), 126-139. doi:10.1016/j.cemconres.2008.11.006 | es_ES |
dc.description.references | Cabeza, M., Keddam, M., Nóvoa, X. R., Sánchez, I., & Takenouti, H. (2006). Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste. Electrochimica Acta, 51(8-9), 1831-1841. doi:10.1016/j.electacta.2005.02.125 | es_ES |
dc.description.references | Wang, A., Zhang, C., & Sun, W. (2004). Fly ash effects. Cement and Concrete Research, 34(11), 2057-2060. doi:10.1016/j.cemconres.2003.03.001 | es_ES |
dc.description.references | Papadakis, V. G. (1999). Effect of fly ash on Portland cement systems. Cement and Concrete Research, 29(11), 1727-1736. doi:10.1016/s0008-8846(99)00153-2 | es_ES |
dc.description.references | Moffatt, E. G., Thomas, M. D. A., & Fahim, A. (2017). Performance of high-volume fly ash concrete in marine environment. Cement and Concrete Research, 102, 127-135. doi:10.1016/j.cemconres.2017.09.008 | es_ES |
dc.description.references | Chalee, W., Ausapanit, P., & Jaturapitakkul, C. (2010). Utilization of fly ash concrete in marine environment for long term design life analysis. Materials & Design, 31(3), 1242-1249. doi:10.1016/j.matdes.2009.09.024 | es_ES |
dc.description.references | Leng, F., Feng, N., & Lu, X. (2000). An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cement and Concrete Research, 30(6), 989-992. doi:10.1016/s0008-8846(00)00250-7 | es_ES |
dc.description.references | Senff, L., Hotza, D., & Labrincha, J. A. (2011). Effect of red mud addition on the rheological behaviour and on hardened state characteristics of cement mortars. Construction and Building Materials, 25(1), 163-170. doi:10.1016/j.conbuildmat.2010.06.043 | es_ES |