- -

Effects of Red Mud Addition in the Microstructure, Durability and Mechanical Performance of Cement Mortars

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of Red Mud Addition in the Microstructure, Durability and Mechanical Performance of Cement Mortars

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ortega, J. M. es_ES
dc.contributor.author Cabeza, Marta es_ES
dc.contributor.author Tenza-Abril, Antonio José es_ES
dc.contributor.author Real-Herraiz, Teresa Pilar es_ES
dc.contributor.author Climent, Miguel Ángel es_ES
dc.contributor.author Sanchez, Isidro es_ES
dc.date.accessioned 2020-04-17T12:51:49Z
dc.date.available 2020-04-17T12:51:49Z
dc.date.issued 2019-03-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140963
dc.description.abstract [EN] Recently, there has been a great effort to incorporate industrial waste into cement-based materials to reach a more sustainable cement industry. In this regard, the Bayer process of obtaining alumina from bauxite generates huge amounts of waste called red mud. Few research articles have pointed out the possibility that red mud has pozzolanic activity. In view of that, the objective of this research is to analyse the short-term effects in the pore structure, mechanical performance and durability of mortars which incorporate up to 20% of red mud as a clinker replacement. As a reference, ordinary Portland cement and fly ash Portland cement mortars were also studied. The microstructure was characterised through mercury intrusion porosimetry and non-destructive impedance spectroscopy, which has not previously been used for studying the pore network evolution of red mud cement-based materials. The possible pozzolanic activity of red mud has been checked using differential scanning calorimetry. The non-steady state chloride migration coefficient and the mechanical properties were studied too. According to the results obtained, the addition of red mud entailed a greater microstructure refinement of the mortar, did not worsen the resistance against chloride ingress and reduced the compressive strength compared to control binders. es_ES
dc.description.sponsorship Part of this research was funded by the Spanish Agencia Estatal de Investigacion (grant code BIA2016-80982-R) and by the European Regional Development Fund (grant code BIA2016-80982-R). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Sustainability es_ES
dc.subject Red mud es_ES
dc.subject Mcrostructure es_ES
dc.subject Durability es_ES
dc.subject Chloride ingress resistance es_ES
dc.subject Mechanical properties es_ES
dc.subject Impedance spectroscopy es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Effects of Red Mud Addition in the Microstructure, Durability and Mechanical Performance of Cement Mortars es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app9050984 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2016-80982-R/ES/APLICACION DE TECNICAS ULTRASONICAS NO LINEALES A LA DETECCION DE LA FISURACION EN HORMIGON/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.description.bibliographicCitation Ortega, JM.; Cabeza, M.; Tenza-Abril, AJ.; Real-Herraiz, TP.; Climent, MÁ.; Sanchez, I. (2019). Effects of Red Mud Addition in the Microstructure, Durability and Mechanical Performance of Cement Mortars. Applied Sciences. 9(5):1-16. https://doi.org/10.3390/app9050984 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app9050984 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\406026 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ayres, R. U., Holmberg, J., & Andersson, B. (2001). Materials and the Global Environment: Waste Mining in the 21st Century. MRS Bulletin, 26(6), 477-480. doi:10.1557/mrs2001.119 es_ES
dc.description.references Hind, A. R., Bhargava, S. K., & Grocott, S. C. (1999). The surface chemistry of Bayer process solids: a review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146(1-3), 359-374. doi:10.1016/s0927-7757(98)00798-5 es_ES
dc.description.references Tsakiridis, P. E., Agatzini-Leonardou, S., & Oustadakis, P. (2004). Red mud addition in the raw meal for the production of Portland cement clinker. Journal of Hazardous Materials, 116(1-2), 103-110. doi:10.1016/j.jhazmat.2004.08.002 es_ES
dc.description.references Cengeloglu, Y., Tor, A., Ersoz, M., & Arslan, G. (2006). Removal of nitrate from aqueous solution by using red mud. Separation and Purification Technology, 51(3), 374-378. doi:10.1016/j.seppur.2006.02.020 es_ES
dc.description.references Kalkan, E. (2006). Utilization of red mud as a stabilization material for the preparation of clay liners. Engineering Geology, 87(3-4), 220-229. doi:10.1016/j.enggeo.2006.07.002 es_ES
dc.description.references Sushil, S., & Batra, V. S. (2008). Catalytic applications of red mud, an aluminium industry waste: A review. Applied Catalysis B: Environmental, 81(1-2), 64-77. doi:10.1016/j.apcatb.2007.12.002 es_ES
dc.description.references Singh, M., Upadhayay, S. N., & Prasad, P. M. (1997). PREPARATION OF IRON RICH CEMENTS USING RED MUD. Cement and Concrete Research, 27(7), 1037-1046. doi:10.1016/s0008-8846(97)00101-4 es_ES
dc.description.references Pontikes, Y., Rathossi, C., Nikolopoulos, P., Angelopoulos, G. N., Jayaseelan, D. D., & Lee, W. E. (2009). Effect of firing temperature and atmosphere on sintering of ceramics made from Bayer process bauxite residue. Ceramics International, 35(1), 401-407. doi:10.1016/j.ceramint.2007.11.013 es_ES
dc.description.references Kavas, T. (2006). Use of boron waste as a fluxing agent in production of red mud brick. Building and Environment, 41(12), 1779-1783. doi:10.1016/j.buildenv.2005.07.019 es_ES
dc.description.references Krivenko, P., Kovalchuk, O., Pasko, A., Croymans, T., Hult, M., Lutter, G., … Schroeyers, W. (2017). Development of alkali activated cements and concrete mixture design with high volumes of red mud. Construction and Building Materials, 151, 819-826. doi:10.1016/j.conbuildmat.2017.06.031 es_ES
dc.description.references Demirboğa, R. (2007). Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Building and Environment, 42(7), 2467-2471. doi:10.1016/j.buildenv.2006.06.010 es_ES
dc.description.references Glinicki, M., Jóźwiak-Niedźwiedzka, D., Gibas, K., & Dąbrowski, M. (2016). Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures. Materials, 9(1), 18. doi:10.3390/ma9010018 es_ES
dc.description.references Williams, M., Ortega, J., Sánchez, I., Cabeza, M., & Climent, M. (2017). Non-Destructive Study of the Microstructural Effects of Sodium and Magnesium Sulphate Attack on Mortars Containing Silica Fume Using Impedance Spectroscopy. Applied Sciences, 7(7), 648. doi:10.3390/app7070648 es_ES
dc.description.references Bijen, J. (1996). Benefits of slag and fly ash. Construction and Building Materials, 10(5), 309-314. doi:10.1016/0950-0618(95)00014-3 es_ES
dc.description.references Bouikni, A., Swamy, R. N., & Bali, A. (2009). Durability properties of concrete containing 50% and 65% slag. Construction and Building Materials, 23(8), 2836-2845. doi:10.1016/j.conbuildmat.2009.02.040 es_ES
dc.description.references Ortega, J. M., Pastor, J. L., Albaladejo, A., Sánchez, I., & Climent, M. A. (2014). Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications. Materiales de Construcción, 64(313), e003. doi:10.3989/mc.2014.04912 es_ES
dc.description.references Coppola, L., Bellezze, T., Belli, A., Bignozzi, M. C., Bolzoni, F., Brenna, A., … Caputo, D. (2018). Binders alternative to Portland cement and waste management for sustainable construction – Part 2. Journal of Applied Biomaterials & Functional Materials, 16(4), 207-221. doi:10.1177/2280800018782852 es_ES
dc.description.references Coppola, L., Bellezze, T., Belli, A., Bignozzi, M. C., Bolzoni, F., Brenna, A., … Caputo, D. (2018). Binders alternative to Portland cement and waste management for sustainable construction—part 1. Journal of Applied Biomaterials & Functional Materials, 16(3), 186-202. doi:10.1177/2280800018782845 es_ES
dc.description.references Liu, X., Zhang, N., Sun, H., Zhang, J., & Li, L. (2011). Structural investigation relating to the cementitious activity of bauxite residue — Red mud. Cement and Concrete Research, 41(8), 847-853. doi:10.1016/j.cemconres.2011.04.004 es_ES
dc.description.references Manfroi, E. P., Cheriaf, M., & Rocha, J. C. (2014). Microstructure, mineralogy and environmental evaluation of cementitious composites produced with red mud waste. Construction and Building Materials, 67, 29-36. doi:10.1016/j.conbuildmat.2013.10.031 es_ES
dc.description.references Ribeiro, D. V., Labrincha, J. A., & Morelli, M. R. (2012). Effect of the addition of red mud on the corrosion parameters of reinforced concrete. Cement and Concrete Research, 42(1), 124-133. doi:10.1016/j.cemconres.2011.09.002 es_ES
dc.description.references Abreu, C. M., Freire, L., Nóvoa, X. R., Pena, G., & Pérez, M. C. (2009). Estudio comparativo del comportamiento electroquímico del hierro en medio alcalino en presencia de lodos rojos y lodos grises. Efecto del Al3+. Revista de Metalurgia, 45(1), 5-13. doi:10.3989/revmetalm.0672 es_ES
dc.description.references Díaz, B., Freire, L., Merino, P., Nóvoa, X. R., & Pérez, M. C. (2008). The effect of red mud in the electrochemical behaviour of carbon steel embedded in mortar. Revista de Metalurgia, 44(3). doi:10.3989/revmetalm.2008.v44.i3.113 es_ES
dc.description.references Collazo, A., Cristóbal, M., Nóvoa, X., Pena, G., & Pérez, M. (2006). Electrochemical Impedance Spectroscopy as a Tool for Studying Steel Corrosion Inhibition in Simulated Concrete Environments—Red Mud Used as Rebar Corrosion Inhibitor. Journal of ASTM International, 3(2), 11785. doi:10.1520/jai11785 es_ES
dc.description.references Díaz, B., Freire, L., Nóvoa, X. R., & Pérez, M. C. (2015). Chloride and CO2 transport in cement paste containing red mud. Cement and Concrete Composites, 62, 178-186. doi:10.1016/j.cemconcomp.2015.02.011 es_ES
dc.description.references Tang, W. C., Wang, Z., Liu, Y., & Cui, H. Z. (2018). Influence of red mud on fresh and hardened properties of self-compacting concrete. Construction and Building Materials, 178, 288-300. doi:10.1016/j.conbuildmat.2018.05.171 es_ES
dc.description.references Liu, R., & Poon, C. (2016). Effects of red mud on properties of self-compacting mortar. Journal of Cleaner Production, 135, 1170-1178. doi:10.1016/j.jclepro.2016.07.052 es_ES
dc.description.references Lemougna, P. N., Wang, K., Tang, Q., & Cui, X. (2017). Study on the development of inorganic polymers from red mud and slag system: Application in mortar and lightweight materials. Construction and Building Materials, 156, 486-495. doi:10.1016/j.conbuildmat.2017.09.015 es_ES
dc.description.references Nikbin, I. M., Aliaghazadeh, M., Sh Charkhtab, & Fathollahpour, A. (2018). Environmental impacts and mechanical properties of lightweight concrete containing bauxite residue (red mud). Journal of Cleaner Production, 172, 2683-2694. doi:10.1016/j.jclepro.2017.11.143 es_ES
dc.description.references Baroghel-Bouny, V. (2007). Water vapour sorption experiments on hardened cementitious materials. Cement and Concrete Research, 37(3), 414-437. doi:10.1016/j.cemconres.2006.11.019 es_ES
dc.description.references Pastor, J. L., Ortega, J. M., Flor, M., López, M. P., Sánchez, I., & Climent, M. A. (2016). Microstructure and durability of fly ash cement grouts for micropiles. Construction and Building Materials, 117, 47-57. doi:10.1016/j.conbuildmat.2016.04.154 es_ES
dc.description.references Ortega, J. M., Letelier, V., Solas, C., Moriconi, G., Climent, M. Á., & Sánchez, I. (2018). Long-term effects of waste brick powder addition in the microstructure and service properties of mortars. Construction and Building Materials, 182, 691-702. doi:10.1016/j.conbuildmat.2018.06.161 es_ES
dc.description.references Ortega, J., Letelier, V., Solas, C., Miró, M., Moriconi, G., Climent, M., & Sánchez, I. (2018). Influence of Waste Glass Powder Addition on the Pore Structure and Service Properties of Cement Mortars. Sustainability, 10(3), 842. doi:10.3390/su10030842 es_ES
dc.description.references Ortega, J., Esteban, M., Rodríguez, R., Pastor, J., Ibanco, F., Sánchez, I., & Climent, M. (2017). Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium. Materials, 10(8), 890. doi:10.3390/ma10080890 es_ES
dc.description.references Collazo, A., Fernández, D., Izquierdo, M., Nóvoa, X. R., & Pérez, C. (2005). Evaluation of red mud as surface treatment for carbon steel prior painting. Progress in Organic Coatings, 52(4), 351-358. doi:10.1016/j.porgcoat.2004.06.008 es_ES
dc.description.references Diamond, S. (1999). Aspects of concrete porosity revisited. Cement and Concrete Research, 29(8), 1181-1188. doi:10.1016/s0008-8846(99)00122-2 es_ES
dc.description.references Diamond, S. (2000). Mercury porosimetry. Cement and Concrete Research, 30(10), 1517-1525. doi:10.1016/s0008-8846(00)00370-7 es_ES
dc.description.references Cabeza, M., Merino, P., Miranda, A., Nóvoa, X. R., & Sanchez, I. (2002). Impedance spectroscopy study of hardened Portland cement paste. Cement and Concrete Research, 32(6), 881-891. doi:10.1016/s0008-8846(02)00720-2 es_ES
dc.description.references Sánchez, I., Nóvoa, X. R., de Vera, G., & Climent, M. A. (2008). Microstructural modifications in Portland cement concrete due to forced ionic migration tests. Study by impedance spectroscopy. Cement and Concrete Research, 38(7), 1015-1025. doi:10.1016/j.cemconres.2008.03.012 es_ES
dc.description.references Ortega Álvarez, J., Esteban Pérez, M., Rodríguez Escribano, R., Pastor Navarro, J., & Sánchez Martín, I. (2016). Microstructural Effects of Sulphate Attack in Sustainable Grouts for Micropiles. Materials, 9(11), 905. doi:10.3390/ma9110905 es_ES
dc.description.references Zornoza, E., Garcés, P., Payá, J., & Climent, M. A. (2009). Improvement of the chloride ingress resistance of OPC mortars by using spent cracking catalyst. Cement and Concrete Research, 39(2), 126-139. doi:10.1016/j.cemconres.2008.11.006 es_ES
dc.description.references Cabeza, M., Keddam, M., Nóvoa, X. R., Sánchez, I., & Takenouti, H. (2006). Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste. Electrochimica Acta, 51(8-9), 1831-1841. doi:10.1016/j.electacta.2005.02.125 es_ES
dc.description.references Wang, A., Zhang, C., & Sun, W. (2004). Fly ash effects. Cement and Concrete Research, 34(11), 2057-2060. doi:10.1016/j.cemconres.2003.03.001 es_ES
dc.description.references Papadakis, V. G. (1999). Effect of fly ash on Portland cement systems. Cement and Concrete Research, 29(11), 1727-1736. doi:10.1016/s0008-8846(99)00153-2 es_ES
dc.description.references Moffatt, E. G., Thomas, M. D. A., & Fahim, A. (2017). Performance of high-volume fly ash concrete in marine environment. Cement and Concrete Research, 102, 127-135. doi:10.1016/j.cemconres.2017.09.008 es_ES
dc.description.references Chalee, W., Ausapanit, P., & Jaturapitakkul, C. (2010). Utilization of fly ash concrete in marine environment for long term design life analysis. Materials & Design, 31(3), 1242-1249. doi:10.1016/j.matdes.2009.09.024 es_ES
dc.description.references Leng, F., Feng, N., & Lu, X. (2000). An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cement and Concrete Research, 30(6), 989-992. doi:10.1016/s0008-8846(00)00250-7 es_ES
dc.description.references Senff, L., Hotza, D., & Labrincha, J. A. (2011). Effect of red mud addition on the rheological behaviour and on hardened state characteristics of cement mortars. Construction and Building Materials, 25(1), 163-170. doi:10.1016/j.conbuildmat.2010.06.043 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem