- -

Effects of Red Mud Addition in the Microstructure, Durability and Mechanical Performance of Cement Mortars

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of Red Mud Addition in the Microstructure, Durability and Mechanical Performance of Cement Mortars

Mostrar el registro completo del ítem

Ortega, JM.; Cabeza, M.; Tenza-Abril, AJ.; Real-Herraiz, TP.; Climent, MÁ.; Sanchez, I. (2019). Effects of Red Mud Addition in the Microstructure, Durability and Mechanical Performance of Cement Mortars. Applied Sciences. 9(5):1-16. https://doi.org/10.3390/app9050984

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140963

Ficheros en el ítem

Metadatos del ítem

Título: Effects of Red Mud Addition in the Microstructure, Durability and Mechanical Performance of Cement Mortars
Autor: Ortega, J. M. Cabeza, Marta Tenza-Abril, Antonio José Real-Herraiz, Teresa Pilar Climent, Miguel Ángel Sanchez, Isidro
Entidad UPV: Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Fecha difusión:
Resumen:
[EN] Recently, there has been a great effort to incorporate industrial waste into cement-based materials to reach a more sustainable cement industry. In this regard, the Bayer process of obtaining alumina from bauxite ...[+]
Palabras clave: Sustainability , Red mud , Mcrostructure , Durability , Chloride ingress resistance , Mechanical properties , Impedance spectroscopy
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app9050984
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app9050984
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIA2016-80982-R/ES/APLICACION DE TECNICAS ULTRASONICAS NO LINEALES A LA DETECCION DE LA FISURACION EN HORMIGON/
Agradecimientos:
Part of this research was funded by the Spanish Agencia Estatal de Investigacion (grant code BIA2016-80982-R) and by the European Regional Development Fund (grant code BIA2016-80982-R).
Tipo: Artículo

References

Ayres, R. U., Holmberg, J., & Andersson, B. (2001). Materials and the Global Environment: Waste Mining in the 21st Century. MRS Bulletin, 26(6), 477-480. doi:10.1557/mrs2001.119

Hind, A. R., Bhargava, S. K., & Grocott, S. C. (1999). The surface chemistry of Bayer process solids: a review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146(1-3), 359-374. doi:10.1016/s0927-7757(98)00798-5

Tsakiridis, P. E., Agatzini-Leonardou, S., & Oustadakis, P. (2004). Red mud addition in the raw meal for the production of Portland cement clinker. Journal of Hazardous Materials, 116(1-2), 103-110. doi:10.1016/j.jhazmat.2004.08.002 [+]
Ayres, R. U., Holmberg, J., & Andersson, B. (2001). Materials and the Global Environment: Waste Mining in the 21st Century. MRS Bulletin, 26(6), 477-480. doi:10.1557/mrs2001.119

Hind, A. R., Bhargava, S. K., & Grocott, S. C. (1999). The surface chemistry of Bayer process solids: a review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146(1-3), 359-374. doi:10.1016/s0927-7757(98)00798-5

Tsakiridis, P. E., Agatzini-Leonardou, S., & Oustadakis, P. (2004). Red mud addition in the raw meal for the production of Portland cement clinker. Journal of Hazardous Materials, 116(1-2), 103-110. doi:10.1016/j.jhazmat.2004.08.002

Cengeloglu, Y., Tor, A., Ersoz, M., & Arslan, G. (2006). Removal of nitrate from aqueous solution by using red mud. Separation and Purification Technology, 51(3), 374-378. doi:10.1016/j.seppur.2006.02.020

Kalkan, E. (2006). Utilization of red mud as a stabilization material for the preparation of clay liners. Engineering Geology, 87(3-4), 220-229. doi:10.1016/j.enggeo.2006.07.002

Sushil, S., & Batra, V. S. (2008). Catalytic applications of red mud, an aluminium industry waste: A review. Applied Catalysis B: Environmental, 81(1-2), 64-77. doi:10.1016/j.apcatb.2007.12.002

Singh, M., Upadhayay, S. N., & Prasad, P. M. (1997). PREPARATION OF IRON RICH CEMENTS USING RED MUD. Cement and Concrete Research, 27(7), 1037-1046. doi:10.1016/s0008-8846(97)00101-4

Pontikes, Y., Rathossi, C., Nikolopoulos, P., Angelopoulos, G. N., Jayaseelan, D. D., & Lee, W. E. (2009). Effect of firing temperature and atmosphere on sintering of ceramics made from Bayer process bauxite residue. Ceramics International, 35(1), 401-407. doi:10.1016/j.ceramint.2007.11.013

Kavas, T. (2006). Use of boron waste as a fluxing agent in production of red mud brick. Building and Environment, 41(12), 1779-1783. doi:10.1016/j.buildenv.2005.07.019

Krivenko, P., Kovalchuk, O., Pasko, A., Croymans, T., Hult, M., Lutter, G., … Schroeyers, W. (2017). Development of alkali activated cements and concrete mixture design with high volumes of red mud. Construction and Building Materials, 151, 819-826. doi:10.1016/j.conbuildmat.2017.06.031

Demirboğa, R. (2007). Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Building and Environment, 42(7), 2467-2471. doi:10.1016/j.buildenv.2006.06.010

Glinicki, M., Jóźwiak-Niedźwiedzka, D., Gibas, K., & Dąbrowski, M. (2016). Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures. Materials, 9(1), 18. doi:10.3390/ma9010018

Williams, M., Ortega, J., Sánchez, I., Cabeza, M., & Climent, M. (2017). Non-Destructive Study of the Microstructural Effects of Sodium and Magnesium Sulphate Attack on Mortars Containing Silica Fume Using Impedance Spectroscopy. Applied Sciences, 7(7), 648. doi:10.3390/app7070648

Bijen, J. (1996). Benefits of slag and fly ash. Construction and Building Materials, 10(5), 309-314. doi:10.1016/0950-0618(95)00014-3

Bouikni, A., Swamy, R. N., & Bali, A. (2009). Durability properties of concrete containing 50% and 65% slag. Construction and Building Materials, 23(8), 2836-2845. doi:10.1016/j.conbuildmat.2009.02.040

Ortega, J. M., Pastor, J. L., Albaladejo, A., Sánchez, I., & Climent, M. A. (2014). Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications. Materiales de Construcción, 64(313), e003. doi:10.3989/mc.2014.04912

Coppola, L., Bellezze, T., Belli, A., Bignozzi, M. C., Bolzoni, F., Brenna, A., … Caputo, D. (2018). Binders alternative to Portland cement and waste management for sustainable construction – Part 2. Journal of Applied Biomaterials & Functional Materials, 16(4), 207-221. doi:10.1177/2280800018782852

Coppola, L., Bellezze, T., Belli, A., Bignozzi, M. C., Bolzoni, F., Brenna, A., … Caputo, D. (2018). Binders alternative to Portland cement and waste management for sustainable construction—part 1. Journal of Applied Biomaterials & Functional Materials, 16(3), 186-202. doi:10.1177/2280800018782845

Liu, X., Zhang, N., Sun, H., Zhang, J., & Li, L. (2011). Structural investigation relating to the cementitious activity of bauxite residue — Red mud. Cement and Concrete Research, 41(8), 847-853. doi:10.1016/j.cemconres.2011.04.004

Manfroi, E. P., Cheriaf, M., & Rocha, J. C. (2014). Microstructure, mineralogy and environmental evaluation of cementitious composites produced with red mud waste. Construction and Building Materials, 67, 29-36. doi:10.1016/j.conbuildmat.2013.10.031

Ribeiro, D. V., Labrincha, J. A., & Morelli, M. R. (2012). Effect of the addition of red mud on the corrosion parameters of reinforced concrete. Cement and Concrete Research, 42(1), 124-133. doi:10.1016/j.cemconres.2011.09.002

Abreu, C. M., Freire, L., Nóvoa, X. R., Pena, G., & Pérez, M. C. (2009). Estudio comparativo del comportamiento electroquímico del hierro en medio alcalino en presencia de lodos rojos y lodos grises. Efecto del Al3+. Revista de Metalurgia, 45(1), 5-13. doi:10.3989/revmetalm.0672

Díaz, B., Freire, L., Merino, P., Nóvoa, X. R., & Pérez, M. C. (2008). The effect of red mud in the electrochemical behaviour of carbon steel embedded in mortar. Revista de Metalurgia, 44(3). doi:10.3989/revmetalm.2008.v44.i3.113

Collazo, A., Cristóbal, M., Nóvoa, X., Pena, G., & Pérez, M. (2006). Electrochemical Impedance Spectroscopy as a Tool for Studying Steel Corrosion Inhibition in Simulated Concrete Environments—Red Mud Used as Rebar Corrosion Inhibitor. Journal of ASTM International, 3(2), 11785. doi:10.1520/jai11785

Díaz, B., Freire, L., Nóvoa, X. R., & Pérez, M. C. (2015). Chloride and CO2 transport in cement paste containing red mud. Cement and Concrete Composites, 62, 178-186. doi:10.1016/j.cemconcomp.2015.02.011

Tang, W. C., Wang, Z., Liu, Y., & Cui, H. Z. (2018). Influence of red mud on fresh and hardened properties of self-compacting concrete. Construction and Building Materials, 178, 288-300. doi:10.1016/j.conbuildmat.2018.05.171

Liu, R., & Poon, C. (2016). Effects of red mud on properties of self-compacting mortar. Journal of Cleaner Production, 135, 1170-1178. doi:10.1016/j.jclepro.2016.07.052

Lemougna, P. N., Wang, K., Tang, Q., & Cui, X. (2017). Study on the development of inorganic polymers from red mud and slag system: Application in mortar and lightweight materials. Construction and Building Materials, 156, 486-495. doi:10.1016/j.conbuildmat.2017.09.015

Nikbin, I. M., Aliaghazadeh, M., Sh Charkhtab, & Fathollahpour, A. (2018). Environmental impacts and mechanical properties of lightweight concrete containing bauxite residue (red mud). Journal of Cleaner Production, 172, 2683-2694. doi:10.1016/j.jclepro.2017.11.143

Baroghel-Bouny, V. (2007). Water vapour sorption experiments on hardened cementitious materials. Cement and Concrete Research, 37(3), 414-437. doi:10.1016/j.cemconres.2006.11.019

Pastor, J. L., Ortega, J. M., Flor, M., López, M. P., Sánchez, I., & Climent, M. A. (2016). Microstructure and durability of fly ash cement grouts for micropiles. Construction and Building Materials, 117, 47-57. doi:10.1016/j.conbuildmat.2016.04.154

Ortega, J. M., Letelier, V., Solas, C., Moriconi, G., Climent, M. Á., & Sánchez, I. (2018). Long-term effects of waste brick powder addition in the microstructure and service properties of mortars. Construction and Building Materials, 182, 691-702. doi:10.1016/j.conbuildmat.2018.06.161

Ortega, J., Letelier, V., Solas, C., Miró, M., Moriconi, G., Climent, M., & Sánchez, I. (2018). Influence of Waste Glass Powder Addition on the Pore Structure and Service Properties of Cement Mortars. Sustainability, 10(3), 842. doi:10.3390/su10030842

Ortega, J., Esteban, M., Rodríguez, R., Pastor, J., Ibanco, F., Sánchez, I., & Climent, M. (2017). Influence of Silica Fume Addition in the Long-Term Performance of Sustainable Cement Grouts for Micropiles Exposed to a Sulphate Aggressive Medium. Materials, 10(8), 890. doi:10.3390/ma10080890

Collazo, A., Fernández, D., Izquierdo, M., Nóvoa, X. R., & Pérez, C. (2005). Evaluation of red mud as surface treatment for carbon steel prior painting. Progress in Organic Coatings, 52(4), 351-358. doi:10.1016/j.porgcoat.2004.06.008

Diamond, S. (1999). Aspects of concrete porosity revisited. Cement and Concrete Research, 29(8), 1181-1188. doi:10.1016/s0008-8846(99)00122-2

Diamond, S. (2000). Mercury porosimetry. Cement and Concrete Research, 30(10), 1517-1525. doi:10.1016/s0008-8846(00)00370-7

Cabeza, M., Merino, P., Miranda, A., Nóvoa, X. R., & Sanchez, I. (2002). Impedance spectroscopy study of hardened Portland cement paste. Cement and Concrete Research, 32(6), 881-891. doi:10.1016/s0008-8846(02)00720-2

Sánchez, I., Nóvoa, X. R., de Vera, G., & Climent, M. A. (2008). Microstructural modifications in Portland cement concrete due to forced ionic migration tests. Study by impedance spectroscopy. Cement and Concrete Research, 38(7), 1015-1025. doi:10.1016/j.cemconres.2008.03.012

Ortega Álvarez, J., Esteban Pérez, M., Rodríguez Escribano, R., Pastor Navarro, J., & Sánchez Martín, I. (2016). Microstructural Effects of Sulphate Attack in Sustainable Grouts for Micropiles. Materials, 9(11), 905. doi:10.3390/ma9110905

Zornoza, E., Garcés, P., Payá, J., & Climent, M. A. (2009). Improvement of the chloride ingress resistance of OPC mortars by using spent cracking catalyst. Cement and Concrete Research, 39(2), 126-139. doi:10.1016/j.cemconres.2008.11.006

Cabeza, M., Keddam, M., Nóvoa, X. R., Sánchez, I., & Takenouti, H. (2006). Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste. Electrochimica Acta, 51(8-9), 1831-1841. doi:10.1016/j.electacta.2005.02.125

Wang, A., Zhang, C., & Sun, W. (2004). Fly ash effects. Cement and Concrete Research, 34(11), 2057-2060. doi:10.1016/j.cemconres.2003.03.001

Papadakis, V. G. (1999). Effect of fly ash on Portland cement systems. Cement and Concrete Research, 29(11), 1727-1736. doi:10.1016/s0008-8846(99)00153-2

Moffatt, E. G., Thomas, M. D. A., & Fahim, A. (2017). Performance of high-volume fly ash concrete in marine environment. Cement and Concrete Research, 102, 127-135. doi:10.1016/j.cemconres.2017.09.008

Chalee, W., Ausapanit, P., & Jaturapitakkul, C. (2010). Utilization of fly ash concrete in marine environment for long term design life analysis. Materials & Design, 31(3), 1242-1249. doi:10.1016/j.matdes.2009.09.024

Leng, F., Feng, N., & Lu, X. (2000). An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cement and Concrete Research, 30(6), 989-992. doi:10.1016/s0008-8846(00)00250-7

Senff, L., Hotza, D., & Labrincha, J. A. (2011). Effect of red mud addition on the rheological behaviour and on hardened state characteristics of cement mortars. Construction and Building Materials, 25(1), 163-170. doi:10.1016/j.conbuildmat.2010.06.043

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem