Mostrar el registro sencillo del ítem
dc.contributor.author | Molada-Tebar, Adolfo | es_ES |
dc.contributor.author | Riutort-Mayol, Gabriel | es_ES |
dc.contributor.author | Marqués-Mateu, Ángel | es_ES |
dc.contributor.author | Lerma, José Luis | es_ES |
dc.date.accessioned | 2020-04-17T12:52:04Z | |
dc.date.available | 2020-04-17T12:52:04Z | |
dc.date.issued | 2019-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140971 | |
dc.description.abstract | [EN] In this paper, we propose a novel approach to undertake the colorimetric camera characterization procedure based on a Gaussian process (GP). GPs are powerful and flexible nonparametric models for multivariate nonlinear functions. To validate the GP model, we compare the results achieved with a second-order polynomial model, which is the most widely used regression model for characterization purposes. We applied the methodology on a set of raw images of rock art scenes collected with two different Single Lens Reflex (SLR) cameras. A leave-one-out cross-validation (LOOCV) procedure was used to assess the predictive performance of the models in terms of CIE XYZ residuals and Delta E-ab* color differences. Values of less than 3 CIELAB units were achieved for Delta E-ab*. The output sRGB characterized images show that both regression models are suitable for practical applications in cultural heritage documentation. However, the results show that colorimetric characterization based on the Gaussian process provides significantly better results, with lower values for residuals and Delta E-ab*. We also analyzed the induced noise into the output image after applying the camera characterization. As the noise depends on the specific camera, proper camera selection is essential for the photogrammetric work. | es_ES |
dc.description.sponsorship | This research is partly funded by the Research and Development Aid Program PAID-01-16 of the Universitat Politecnica de Valencia, through FPI-UPV-2016 Sub 1 grant. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cultural heritage | es_ES |
dc.subject | Camera characterization | es_ES |
dc.subject | Polynomial regression | es_ES |
dc.subject | Gaussian processes | es_ES |
dc.subject | Colorimetry | es_ES |
dc.subject | CIE color spaces | es_ES |
dc.subject | Noise analysis | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | A Gaussian Process Model for Color Camera Characterization: Assessment in Outdoor Levantine Rock Art Scenes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s19214610 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-16/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Molada-Tebar, A.; Riutort-Mayol, G.; Marqués-Mateu, Á.; Lerma, JL. (2019). A Gaussian Process Model for Color Camera Characterization: Assessment in Outdoor Levantine Rock Art Scenes. Sensors. 19(21):1-22. https://doi.org/10.3390/s19214610 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s19214610 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 21 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.relation.pasarela | S\395892 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Ruiz, J. F., & Pereira, J. (2014). The colours of rock art. Analysis of colour recording and communication systems in rock art research. Journal of Archaeological Science, 50, 338-349. doi:10.1016/j.jas.2014.06.023 | es_ES |
dc.description.references | Gaiani, M., Apollonio, F., Ballabeni, A., & Remondino, F. (2017). Securing Color Fidelity in 3D Architectural Heritage Scenarios. Sensors, 17(11), 2437. doi:10.3390/s17112437 | es_ES |
dc.description.references | Robert, E., Petrognani, S., & Lesvignes, E. (2016). Applications of digital photography in the study of Paleolithic cave art. Journal of Archaeological Science: Reports, 10, 847-858. doi:10.1016/j.jasrep.2016.07.026 | es_ES |
dc.description.references | Fernández-Lozano, J., Gutiérrez-Alonso, G., Ruiz-Tejada, M. Á., & Criado-Valdés, M. (2017). 3D digital documentation and image enhancement integration into schematic rock art analysis and preservation: The Castrocontrigo Neolithic rock art (NW Spain). Journal of Cultural Heritage, 26, 160-166. doi:10.1016/j.culher.2017.01.008 | es_ES |
dc.description.references | López-Menchero Bendicho, V. M., Marchante Ortega, Á., Vincent, M., Cárdenas Martín-Buitrago, Á. J., & Onrubia Pintado, J. (2017). Uso combinado de la fotografía digital nocturna y de la fotogrametría en los procesos de documentación de petroglifos: el caso de Alcázar de San Juan (Ciudad Real, España). Virtual Archaeology Review, 8(17), 64. doi:10.4995/var.2017.6820 | es_ES |
dc.description.references | Hong, G., Luo, M. R., & Rhodes, P. A. (2000). A study of digital camera colorimetric characterization based on polynomial modeling. Color Research & Application, 26(1), 76-84. doi:10.1002/1520-6378(200102)26:1<76::aid-col8>3.0.co;2-3 | es_ES |
dc.description.references | Hung, P.-C. (1993). Colorimetric calibration in electronic imaging devices using a look-up-table model and interpolations. Journal of Electronic Imaging, 2(1), 53. doi:10.1117/12.132391 | es_ES |
dc.description.references | Vrhel, M. J., & Trussell, H. J. (1992). Color correction using principal components. Color Research & Application, 17(5), 328-338. doi:10.1002/col.5080170507 | es_ES |
dc.description.references | Bianco, S., Gasparini, F., Russo, A., & Schettini, R. (2007). A New Method for RGB to XYZ Transformation Based on Pattern Search Optimization. IEEE Transactions on Consumer Electronics, 53(3), 1020-1028. doi:10.1109/tce.2007.4341581 | es_ES |
dc.description.references | Finlayson, G. D., Mackiewicz, M., & Hurlbert, A. (2015). Color Correction Using Root-Polynomial Regression. IEEE Transactions on Image Processing, 24(5), 1460-1470. doi:10.1109/tip.2015.2405336 | es_ES |
dc.description.references | Connah, D., Westland, S., & Thomson, M. G. A. (2001). Recovering spectral information using digital camera systems. Coloration Technology, 117(6), 309-312. doi:10.1111/j.1478-4408.2001.tb00080.x | es_ES |
dc.description.references | Liang, J., & Wan, X. (2017). Optimized method for spectral reflectance reconstruction from camera responses. Optics Express, 25(23), 28273. doi:10.1364/oe.25.028273 | es_ES |
dc.description.references | Heikkinen, V. (2018). Spectral Reflectance Estimation Using Gaussian Processes and Combination Kernels. IEEE Transactions on Image Processing, 27(7), 3358-3373. doi:10.1109/tip.2018.2820839 | es_ES |
dc.description.references | Molada-Tebar, A., Lerma, J. L., & Marqués-Mateu, Á. (2017). Camera characterization for improving color archaeological documentation. Color Research & Application, 43(1), 47-57. doi:10.1002/col.22152 | es_ES |
dc.description.references | Durmus, A., Moulines, É., & Pereyra, M. (2018). Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau. SIAM Journal on Imaging Sciences, 11(1), 473-506. doi:10.1137/16m1108340 | es_ES |
dc.description.references | Ruppert, D., Wand, M. P., & Carroll, R. J. (2009). Semiparametric regression during 2003–2007. Electronic Journal of Statistics, 3(0), 1193-1256. doi:10.1214/09-ejs525 | es_ES |
dc.description.references | Rock Art of the Mediterranean Basin on the Iberian Peninsulahttp://whc.unesco.org/en/list/874 | es_ES |
dc.description.references | Direct Image Sensor Sigma SD15http://www.sigma-sd.com/SD15/technology-colorsensor.html | es_ES |
dc.description.references | Ramanath, R., Snyder, W. E., Yoo, Y., & Drew, M. S. (2005). Color image processing pipeline. IEEE Signal Processing Magazine, 22(1), 34-43. doi:10.1109/msp.2005.1407713 | es_ES |
dc.description.references | Stone, M. (1974). Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 111-133. doi:10.1111/j.2517-6161.1974.tb00994.x | es_ES |
dc.description.references | Vazquez-Corral, J., Connah, D., & Bertalmío, M. (2014). Perceptual Color Characterization of Cameras. Sensors, 14(12), 23205-23229. doi:10.3390/s141223205 | es_ES |
dc.description.references | Sharma, G., Wu, W., & Dalal, E. N. (2004). The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application, 30(1), 21-30. doi:10.1002/col.20070 | es_ES |
dc.description.references | Lebrun, M., Buades, A., & Morel, J. M. (2013). A Nonlocal Bayesian Image Denoising Algorithm. SIAM Journal on Imaging Sciences, 6(3), 1665-1688. doi:10.1137/120874989 | es_ES |
dc.description.references | Colom, M., Buades, A., & Morel, J.-M. (2014). Nonparametric noise estimation method for raw images. Journal of the Optical Society of America A, 31(4), 863. doi:10.1364/josaa.31.000863 | es_ES |
dc.description.references | Sur, F., & Grédiac, M. (2015). Measuring the Noise of Digital Imaging Sensors by Stacking Raw Images Affected by Vibrations and Illumination Flickering. SIAM Journal on Imaging Sciences, 8(1), 611-643. doi:10.1137/140977035 | es_ES |
dc.description.references | Zhang, Y., Wang, G., & Xu, J. (2018). Parameter Estimation of Signal-Dependent Random Noise in CMOS/CCD Image Sensor Based on Numerical Characteristic of Mixed Poisson Noise Samples. Sensors, 18(7), 2276. doi:10.3390/s18072276 | es_ES |
dc.description.references | Naveed, K., Ehsan, S., McDonald-Maier, K. D., & Ur Rehman, N. (2019). A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors. Sensors, 19(1), 206. doi:10.3390/s19010206 | es_ES |
dc.description.references | Riutort-Mayol, G., Marqués-Mateu, Á., Seguí, A. E., & Lerma, J. L. (2012). Grey Level and Noise Evaluation of a Foveon X3 Image Sensor: A Statistical and Experimental Approach. Sensors, 12(8), 10339-10368. doi:10.3390/s120810339 | es_ES |
dc.description.references | Marqués-Mateu, Á., Lerma, J. L., & Riutort-Mayol, G. (2013). Statistical grey level and noise evaluation of Foveon X3 and CFA image sensors. Optics & Laser Technology, 48, 1-15. doi:10.1016/j.optlastec.2012.09.034 | es_ES |
dc.description.references | Chou, Y.-F., Luo, M. R., Li, C., Cheung, V., & Lee, S.-L. (2013). Methods for designing characterisation targets for digital cameras. Coloration Technology, 129(3), 203-213. doi:10.1111/cote.12022 | es_ES |
dc.description.references | Shen, H.-L., Cai, P.-Q., Shao, S.-J., & Xin, J. H. (2007). Reflectance reconstruction for multispectral imaging by adaptive Wiener estimation. Optics Express, 15(23), 15545. doi:10.1364/oe.15.015545 | es_ES |
dc.description.references | Molada-Tebar, A., Marqués-Mateu, Á., & Lerma, J. (2019). Camera Characterisation Based on Skin-Tone Colours for Rock Art Recording. Proceedings, 19(1), 12. doi:10.3390/proceedings2019019012 | es_ES |