- -

A Gaussian Process Model for Color Camera Characterization: Assessment in Outdoor Levantine Rock Art Scenes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Gaussian Process Model for Color Camera Characterization: Assessment in Outdoor Levantine Rock Art Scenes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Molada-Tebar, Adolfo es_ES
dc.contributor.author Riutort-Mayol, Gabriel es_ES
dc.contributor.author Marqués-Mateu, Ángel es_ES
dc.contributor.author Lerma, José Luis es_ES
dc.date.accessioned 2020-04-17T12:52:04Z
dc.date.available 2020-04-17T12:52:04Z
dc.date.issued 2019-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140971
dc.description.abstract [EN] In this paper, we propose a novel approach to undertake the colorimetric camera characterization procedure based on a Gaussian process (GP). GPs are powerful and flexible nonparametric models for multivariate nonlinear functions. To validate the GP model, we compare the results achieved with a second-order polynomial model, which is the most widely used regression model for characterization purposes. We applied the methodology on a set of raw images of rock art scenes collected with two different Single Lens Reflex (SLR) cameras. A leave-one-out cross-validation (LOOCV) procedure was used to assess the predictive performance of the models in terms of CIE XYZ residuals and Delta E-ab* color differences. Values of less than 3 CIELAB units were achieved for Delta E-ab*. The output sRGB characterized images show that both regression models are suitable for practical applications in cultural heritage documentation. However, the results show that colorimetric characterization based on the Gaussian process provides significantly better results, with lower values for residuals and Delta E-ab*. We also analyzed the induced noise into the output image after applying the camera characterization. As the noise depends on the specific camera, proper camera selection is essential for the photogrammetric work. es_ES
dc.description.sponsorship This research is partly funded by the Research and Development Aid Program PAID-01-16 of the Universitat Politecnica de Valencia, through FPI-UPV-2016 Sub 1 grant. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cultural heritage es_ES
dc.subject Camera characterization es_ES
dc.subject Polynomial regression es_ES
dc.subject Gaussian processes es_ES
dc.subject Colorimetry es_ES
dc.subject CIE color spaces es_ES
dc.subject Noise analysis es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title A Gaussian Process Model for Color Camera Characterization: Assessment in Outdoor Levantine Rock Art Scenes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19214610 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-16/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Molada-Tebar, A.; Riutort-Mayol, G.; Marqués-Mateu, Á.; Lerma, JL. (2019). A Gaussian Process Model for Color Camera Characterization: Assessment in Outdoor Levantine Rock Art Scenes. Sensors. 19(21):1-22. https://doi.org/10.3390/s19214610 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19214610 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 21 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.relation.pasarela S\395892 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Ruiz, J. F., & Pereira, J. (2014). The colours of rock art. Analysis of colour recording and communication systems in rock art research. Journal of Archaeological Science, 50, 338-349. doi:10.1016/j.jas.2014.06.023 es_ES
dc.description.references Gaiani, M., Apollonio, F., Ballabeni, A., & Remondino, F. (2017). Securing Color Fidelity in 3D Architectural Heritage Scenarios. Sensors, 17(11), 2437. doi:10.3390/s17112437 es_ES
dc.description.references Robert, E., Petrognani, S., & Lesvignes, E. (2016). Applications of digital photography in the study of Paleolithic cave art. Journal of Archaeological Science: Reports, 10, 847-858. doi:10.1016/j.jasrep.2016.07.026 es_ES
dc.description.references Fernández-Lozano, J., Gutiérrez-Alonso, G., Ruiz-Tejada, M. Á., & Criado-Valdés, M. (2017). 3D digital documentation and image enhancement integration into schematic rock art analysis and preservation: The Castrocontrigo Neolithic rock art (NW Spain). Journal of Cultural Heritage, 26, 160-166. doi:10.1016/j.culher.2017.01.008 es_ES
dc.description.references López-Menchero Bendicho, V. M., Marchante Ortega, Á., Vincent, M., Cárdenas Martín-Buitrago, Á. J., & Onrubia Pintado, J. (2017). Uso combinado de la fotografía digital nocturna y de la fotogrametría en los procesos de documentación de petroglifos: el caso de Alcázar de San Juan (Ciudad Real, España). Virtual Archaeology Review, 8(17), 64. doi:10.4995/var.2017.6820 es_ES
dc.description.references Hong, G., Luo, M. R., & Rhodes, P. A. (2000). A study of digital camera colorimetric characterization based on polynomial modeling. Color Research & Application, 26(1), 76-84. doi:10.1002/1520-6378(200102)26:1<76::aid-col8>3.0.co;2-3 es_ES
dc.description.references Hung, P.-C. (1993). Colorimetric calibration in electronic imaging devices using a look-up-table model and interpolations. Journal of Electronic Imaging, 2(1), 53. doi:10.1117/12.132391 es_ES
dc.description.references Vrhel, M. J., & Trussell, H. J. (1992). Color correction using principal components. Color Research & Application, 17(5), 328-338. doi:10.1002/col.5080170507 es_ES
dc.description.references Bianco, S., Gasparini, F., Russo, A., & Schettini, R. (2007). A New Method for RGB to XYZ Transformation Based on Pattern Search Optimization. IEEE Transactions on Consumer Electronics, 53(3), 1020-1028. doi:10.1109/tce.2007.4341581 es_ES
dc.description.references Finlayson, G. D., Mackiewicz, M., & Hurlbert, A. (2015). Color Correction Using Root-Polynomial Regression. IEEE Transactions on Image Processing, 24(5), 1460-1470. doi:10.1109/tip.2015.2405336 es_ES
dc.description.references Connah, D., Westland, S., & Thomson, M. G. A. (2001). Recovering spectral information using digital camera systems. Coloration Technology, 117(6), 309-312. doi:10.1111/j.1478-4408.2001.tb00080.x es_ES
dc.description.references Liang, J., & Wan, X. (2017). Optimized method for spectral reflectance reconstruction from camera responses. Optics Express, 25(23), 28273. doi:10.1364/oe.25.028273 es_ES
dc.description.references Heikkinen, V. (2018). Spectral Reflectance Estimation Using Gaussian Processes and Combination Kernels. IEEE Transactions on Image Processing, 27(7), 3358-3373. doi:10.1109/tip.2018.2820839 es_ES
dc.description.references Molada-Tebar, A., Lerma, J. L., & Marqués-Mateu, Á. (2017). Camera characterization for improving color archaeological documentation. Color Research & Application, 43(1), 47-57. doi:10.1002/col.22152 es_ES
dc.description.references Durmus, A., Moulines, É., & Pereyra, M. (2018). Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau. SIAM Journal on Imaging Sciences, 11(1), 473-506. doi:10.1137/16m1108340 es_ES
dc.description.references Ruppert, D., Wand, M. P., & Carroll, R. J. (2009). Semiparametric regression during 2003–2007. Electronic Journal of Statistics, 3(0), 1193-1256. doi:10.1214/09-ejs525 es_ES
dc.description.references Rock Art of the Mediterranean Basin on the Iberian Peninsulahttp://whc.unesco.org/en/list/874 es_ES
dc.description.references Direct Image Sensor Sigma SD15http://www.sigma-sd.com/SD15/technology-colorsensor.html es_ES
dc.description.references Ramanath, R., Snyder, W. E., Yoo, Y., & Drew, M. S. (2005). Color image processing pipeline. IEEE Signal Processing Magazine, 22(1), 34-43. doi:10.1109/msp.2005.1407713 es_ES
dc.description.references Stone, M. (1974). Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 111-133. doi:10.1111/j.2517-6161.1974.tb00994.x es_ES
dc.description.references Vazquez-Corral, J., Connah, D., & Bertalmío, M. (2014). Perceptual Color Characterization of Cameras. Sensors, 14(12), 23205-23229. doi:10.3390/s141223205 es_ES
dc.description.references Sharma, G., Wu, W., & Dalal, E. N. (2004). The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application, 30(1), 21-30. doi:10.1002/col.20070 es_ES
dc.description.references Lebrun, M., Buades, A., & Morel, J. M. (2013). A Nonlocal Bayesian Image Denoising Algorithm. SIAM Journal on Imaging Sciences, 6(3), 1665-1688. doi:10.1137/120874989 es_ES
dc.description.references Colom, M., Buades, A., & Morel, J.-M. (2014). Nonparametric noise estimation method for raw images. Journal of the Optical Society of America A, 31(4), 863. doi:10.1364/josaa.31.000863 es_ES
dc.description.references Sur, F., & Grédiac, M. (2015). Measuring the Noise of Digital Imaging Sensors by Stacking Raw Images Affected by Vibrations and Illumination Flickering. SIAM Journal on Imaging Sciences, 8(1), 611-643. doi:10.1137/140977035 es_ES
dc.description.references Zhang, Y., Wang, G., & Xu, J. (2018). Parameter Estimation of Signal-Dependent Random Noise in CMOS/CCD Image Sensor Based on Numerical Characteristic of Mixed Poisson Noise Samples. Sensors, 18(7), 2276. doi:10.3390/s18072276 es_ES
dc.description.references Naveed, K., Ehsan, S., McDonald-Maier, K. D., & Ur Rehman, N. (2019). A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors. Sensors, 19(1), 206. doi:10.3390/s19010206 es_ES
dc.description.references Riutort-Mayol, G., Marqués-Mateu, Á., Seguí, A. E., & Lerma, J. L. (2012). Grey Level and Noise Evaluation of a Foveon X3 Image Sensor: A Statistical and Experimental Approach. Sensors, 12(8), 10339-10368. doi:10.3390/s120810339 es_ES
dc.description.references Marqués-Mateu, Á., Lerma, J. L., & Riutort-Mayol, G. (2013). Statistical grey level and noise evaluation of Foveon X3 and CFA image sensors. Optics & Laser Technology, 48, 1-15. doi:10.1016/j.optlastec.2012.09.034 es_ES
dc.description.references Chou, Y.-F., Luo, M. R., Li, C., Cheung, V., & Lee, S.-L. (2013). Methods for designing characterisation targets for digital cameras. Coloration Technology, 129(3), 203-213. doi:10.1111/cote.12022 es_ES
dc.description.references Shen, H.-L., Cai, P.-Q., Shao, S.-J., & Xin, J. H. (2007). Reflectance reconstruction for multispectral imaging by adaptive Wiener estimation. Optics Express, 15(23), 15545. doi:10.1364/oe.15.015545 es_ES
dc.description.references Molada-Tebar, A., Marqués-Mateu, Á., & Lerma, J. (2019). Camera Characterisation Based on Skin-Tone Colours for Rock Art Recording. Proceedings, 19(1), 12. doi:10.3390/proceedings2019019012 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem