- -

A Gaussian Process Model for Color Camera Characterization: Assessment in Outdoor Levantine Rock Art Scenes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Gaussian Process Model for Color Camera Characterization: Assessment in Outdoor Levantine Rock Art Scenes

Mostrar el registro completo del ítem

Molada-Tebar, A.; Riutort-Mayol, G.; Marqués-Mateu, Á.; Lerma, JL. (2019). A Gaussian Process Model for Color Camera Characterization: Assessment in Outdoor Levantine Rock Art Scenes. Sensors. 19(21):1-22. https://doi.org/10.3390/s19214610

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140971

Ficheros en el ítem

Metadatos del ítem

Título: A Gaussian Process Model for Color Camera Characterization: Assessment in Outdoor Levantine Rock Art Scenes
Autor: Molada-Tebar, Adolfo Riutort-Mayol, Gabriel Marqués-Mateu, Ángel Lerma, José Luis
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
Fecha difusión:
Resumen:
[EN] In this paper, we propose a novel approach to undertake the colorimetric camera characterization procedure based on a Gaussian process (GP). GPs are powerful and flexible nonparametric models for multivariate nonlinear ...[+]
Palabras clave: Cultural heritage , Camera characterization , Polynomial regression , Gaussian processes , Colorimetry , CIE color spaces , Noise analysis
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s19214610
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s19214610
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-16/
Agradecimientos:
This research is partly funded by the Research and Development Aid Program PAID-01-16 of the Universitat Politecnica de Valencia, through FPI-UPV-2016 Sub 1 grant.
Tipo: Artículo

References

Ruiz, J. F., & Pereira, J. (2014). The colours of rock art. Analysis of colour recording and communication systems in rock art research. Journal of Archaeological Science, 50, 338-349. doi:10.1016/j.jas.2014.06.023

Gaiani, M., Apollonio, F., Ballabeni, A., & Remondino, F. (2017). Securing Color Fidelity in 3D Architectural Heritage Scenarios. Sensors, 17(11), 2437. doi:10.3390/s17112437

Robert, E., Petrognani, S., & Lesvignes, E. (2016). Applications of digital photography in the study of Paleolithic cave art. Journal of Archaeological Science: Reports, 10, 847-858. doi:10.1016/j.jasrep.2016.07.026 [+]
Ruiz, J. F., & Pereira, J. (2014). The colours of rock art. Analysis of colour recording and communication systems in rock art research. Journal of Archaeological Science, 50, 338-349. doi:10.1016/j.jas.2014.06.023

Gaiani, M., Apollonio, F., Ballabeni, A., & Remondino, F. (2017). Securing Color Fidelity in 3D Architectural Heritage Scenarios. Sensors, 17(11), 2437. doi:10.3390/s17112437

Robert, E., Petrognani, S., & Lesvignes, E. (2016). Applications of digital photography in the study of Paleolithic cave art. Journal of Archaeological Science: Reports, 10, 847-858. doi:10.1016/j.jasrep.2016.07.026

Fernández-Lozano, J., Gutiérrez-Alonso, G., Ruiz-Tejada, M. Á., & Criado-Valdés, M. (2017). 3D digital documentation and image enhancement integration into schematic rock art analysis and preservation: The Castrocontrigo Neolithic rock art (NW Spain). Journal of Cultural Heritage, 26, 160-166. doi:10.1016/j.culher.2017.01.008

López-Menchero Bendicho, V. M., Marchante Ortega, Á., Vincent, M., Cárdenas Martín-Buitrago, Á. J., & Onrubia Pintado, J. (2017). Uso combinado de la fotografía digital nocturna y de la fotogrametría en los procesos de documentación de petroglifos: el caso de Alcázar de San Juan (Ciudad Real, España). Virtual Archaeology Review, 8(17), 64. doi:10.4995/var.2017.6820

Hong, G., Luo, M. R., & Rhodes, P. A. (2000). A study of digital camera colorimetric characterization based on polynomial modeling. Color Research & Application, 26(1), 76-84. doi:10.1002/1520-6378(200102)26:1<76::aid-col8>3.0.co;2-3

Hung, P.-C. (1993). Colorimetric calibration in electronic imaging devices using a look-up-table model and interpolations. Journal of Electronic Imaging, 2(1), 53. doi:10.1117/12.132391

Vrhel, M. J., & Trussell, H. J. (1992). Color correction using principal components. Color Research & Application, 17(5), 328-338. doi:10.1002/col.5080170507

Bianco, S., Gasparini, F., Russo, A., & Schettini, R. (2007). A New Method for RGB to XYZ Transformation Based on Pattern Search Optimization. IEEE Transactions on Consumer Electronics, 53(3), 1020-1028. doi:10.1109/tce.2007.4341581

Finlayson, G. D., Mackiewicz, M., & Hurlbert, A. (2015). Color Correction Using Root-Polynomial Regression. IEEE Transactions on Image Processing, 24(5), 1460-1470. doi:10.1109/tip.2015.2405336

Connah, D., Westland, S., & Thomson, M. G. A. (2001). Recovering spectral information using digital camera systems. Coloration Technology, 117(6), 309-312. doi:10.1111/j.1478-4408.2001.tb00080.x

Liang, J., & Wan, X. (2017). Optimized method for spectral reflectance reconstruction from camera responses. Optics Express, 25(23), 28273. doi:10.1364/oe.25.028273

Heikkinen, V. (2018). Spectral Reflectance Estimation Using Gaussian Processes and Combination Kernels. IEEE Transactions on Image Processing, 27(7), 3358-3373. doi:10.1109/tip.2018.2820839

Molada-Tebar, A., Lerma, J. L., & Marqués-Mateu, Á. (2017). Camera characterization for improving color archaeological documentation. Color Research & Application, 43(1), 47-57. doi:10.1002/col.22152

Durmus, A., Moulines, É., & Pereyra, M. (2018). Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau. SIAM Journal on Imaging Sciences, 11(1), 473-506. doi:10.1137/16m1108340

Ruppert, D., Wand, M. P., & Carroll, R. J. (2009). Semiparametric regression during 2003–2007. Electronic Journal of Statistics, 3(0), 1193-1256. doi:10.1214/09-ejs525

Rock Art of the Mediterranean Basin on the Iberian Peninsulahttp://whc.unesco.org/en/list/874

Direct Image Sensor Sigma SD15http://www.sigma-sd.com/SD15/technology-colorsensor.html

Ramanath, R., Snyder, W. E., Yoo, Y., & Drew, M. S. (2005). Color image processing pipeline. IEEE Signal Processing Magazine, 22(1), 34-43. doi:10.1109/msp.2005.1407713

Stone, M. (1974). Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 111-133. doi:10.1111/j.2517-6161.1974.tb00994.x

Vazquez-Corral, J., Connah, D., & Bertalmío, M. (2014). Perceptual Color Characterization of Cameras. Sensors, 14(12), 23205-23229. doi:10.3390/s141223205

Sharma, G., Wu, W., & Dalal, E. N. (2004). The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application, 30(1), 21-30. doi:10.1002/col.20070

Lebrun, M., Buades, A., & Morel, J. M. (2013). A Nonlocal Bayesian Image Denoising Algorithm. SIAM Journal on Imaging Sciences, 6(3), 1665-1688. doi:10.1137/120874989

Colom, M., Buades, A., & Morel, J.-M. (2014). Nonparametric noise estimation method for raw images. Journal of the Optical Society of America A, 31(4), 863. doi:10.1364/josaa.31.000863

Sur, F., & Grédiac, M. (2015). Measuring the Noise of Digital Imaging Sensors by Stacking Raw Images Affected by Vibrations and Illumination Flickering. SIAM Journal on Imaging Sciences, 8(1), 611-643. doi:10.1137/140977035

Zhang, Y., Wang, G., & Xu, J. (2018). Parameter Estimation of Signal-Dependent Random Noise in CMOS/CCD Image Sensor Based on Numerical Characteristic of Mixed Poisson Noise Samples. Sensors, 18(7), 2276. doi:10.3390/s18072276

Naveed, K., Ehsan, S., McDonald-Maier, K. D., & Ur Rehman, N. (2019). A Multiscale Denoising Framework Using Detection Theory with Application to Images from CMOS/CCD Sensors. Sensors, 19(1), 206. doi:10.3390/s19010206

Riutort-Mayol, G., Marqués-Mateu, Á., Seguí, A. E., & Lerma, J. L. (2012). Grey Level and Noise Evaluation of a Foveon X3 Image Sensor: A Statistical and Experimental Approach. Sensors, 12(8), 10339-10368. doi:10.3390/s120810339

Marqués-Mateu, Á., Lerma, J. L., & Riutort-Mayol, G. (2013). Statistical grey level and noise evaluation of Foveon X3 and CFA image sensors. Optics & Laser Technology, 48, 1-15. doi:10.1016/j.optlastec.2012.09.034

Chou, Y.-F., Luo, M. R., Li, C., Cheung, V., & Lee, S.-L. (2013). Methods for designing characterisation targets for digital cameras. Coloration Technology, 129(3), 203-213. doi:10.1111/cote.12022

Shen, H.-L., Cai, P.-Q., Shao, S.-J., & Xin, J. H. (2007). Reflectance reconstruction for multispectral imaging by adaptive Wiener estimation. Optics Express, 15(23), 15545. doi:10.1364/oe.15.015545

Molada-Tebar, A., Marqués-Mateu, Á., & Lerma, J. (2019). Camera Characterisation Based on Skin-Tone Colours for Rock Art Recording. Proceedings, 19(1), 12. doi:10.3390/proceedings2019019012

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem