Abrahamsen, T. A., Nygaard, O., & Põldvere, M. (2006). On weak integrability and boundedness in Banach spaces. Journal of Mathematical Analysis and Applications, 314(1), 67-74. doi:10.1016/j.jmaa.2005.03.071
Blasco, O., Calabuig, J. M., & Signes, T. (2008). A bilinear version of Orlicz–Pettis theorem. Journal of Mathematical Analysis and Applications, 348(1), 150-164. doi:10.1016/j.jmaa.2008.07.013
Calabuig, J. M., Lajara, S., Rodríguez, J., & Sánchez-Pérez, E. A. (2014). Compactness in L1of a vector measure. Studia Mathematica, 225(3), 259-282. doi:10.4064/sm225-3-6
[+]
Abrahamsen, T. A., Nygaard, O., & Põldvere, M. (2006). On weak integrability and boundedness in Banach spaces. Journal of Mathematical Analysis and Applications, 314(1), 67-74. doi:10.1016/j.jmaa.2005.03.071
Blasco, O., Calabuig, J. M., & Signes, T. (2008). A bilinear version of Orlicz–Pettis theorem. Journal of Mathematical Analysis and Applications, 348(1), 150-164. doi:10.1016/j.jmaa.2008.07.013
Calabuig, J. M., Lajara, S., Rodríguez, J., & Sánchez-Pérez, E. A. (2014). Compactness in L1of a vector measure. Studia Mathematica, 225(3), 259-282. doi:10.4064/sm225-3-6
Calabuig, J. M., Rodríguez, J., & Sánchez-Pérez, E. A. (2009). On the Structure of L1 of a Vector Measure via its Integration Operator. Integral Equations and Operator Theory, 64(1), 21-33. doi:10.1007/s00020-009-1670-5
Curbera, G. P. (1992). Operators intoL 1 of a vector measure and applications to Banach lattices. Mathematische Annalen, 293(1), 317-330. doi:10.1007/bf01444717
Curbera, G. (1994). WhenL1of a vector measure is an AL-space. Pacific Journal of Mathematics, 162(2), 287-303. doi:10.2140/pjm.1994.162.287
Diestel, J., & Uhl, J. (1977). Vector Measures. Mathematical Surveys and Monographs. doi:10.1090/surv/015
Elton, J. (1981). Extremely weakly unconditionally convergent series. Israel Journal of Mathematics, 40(3-4), 255-258. doi:10.1007/bf02761366
I. Ferrando Duality in Spaces of p -integrable Functions with respect to a Vector Measure Ph.D. Thesis Universitat Politècnica de València 2009 https://riunet.upv.es/handle/10251/6242
Ferrando, I. (2011). Factorization theorem for 1-summing operators. Czechoslovak Mathematical Journal, 61(3), 785-793. doi:10.1007/s10587-011-0027-9
Ferrando, I., & Rodríguez, J. (2008). The weak topology on <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math> of a vector measure. Topology and its Applications, 155(13), 1439-1444. doi:10.1016/j.topol.2007.12.014
Gasparis, I. (2008). On a problem of H.P. Rosenthal concerning operators on <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi>C</mml:mi><mml:mo stretchy=«false»>[</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=«false»>]</mml:mo></mml:math>. Advances in Mathematics, 218(5), 1512-1525. doi:10.1016/j.aim.2008.03.015
González, M., & Martínez-Abejón, A. (2010). Tauberian Operators. doi:10.1007/978-3-7643-8998-7
G. Manjabacas Topologies Associated to Norming Sets in Banach Spaces (Spanish) Ph.D. Thesis Universidad de Murcia 1998 http://webs.um.es/beca/dissertationstudents.html
Meyer-Nieberg, P. (1991). Banach Lattices. Universitext. doi:10.1007/978-3-642-76724-1
Nygaard, O. (2006). Thick sets in banach spaces and their properties. Quaestiones Mathematicae, 29(1), 59-72. doi:10.2989/16073600609486149
Okada, S. (1993). The Dual Space of L1(μ) for a Vector Measure μ. Journal of Mathematical Analysis and Applications, 177(2), 583-599. doi:10.1006/jmaa.1993.1279
Okada, S., Ricker, W. J., & Rodríguez-Piazza, L. (2011). Operator ideal properties of vector measures with finite variation. Studia Mathematica, 205(3), 215-249. doi:10.4064/sm205-3-2
Rosenthal, H. P. (1969). On quasi-complemented subspaces of Banach spaces, with an Appendix on compactness of operators from Lp(μ) to Lr(ν). Journal of Functional Analysis, 4(2), 176-214. doi:10.1016/0022-1236(69)90011-1
Rueda, P., & Sánchez-Pérez, E. A. (2015). Compactness in spaces of p-integrable functions with respect to a vector measure. Topological Methods in Nonlinear Analysis, 45(2), 641. doi:10.12775/tmna.2015.030
Sánchez Pérez, E. A. (2001). Compactness arguments for spaces of $p$-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces. Illinois Journal of Mathematics, 45(3), 907-923. doi:10.1215/ijm/1258138159
[-]