- -

Summability in L-1 of a vector measure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Summability in L-1 of a vector measure

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calabuig, J. M. es_ES
dc.contributor.author Rodriguez, J. es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2020-04-17T12:52:16Z
dc.date.available 2020-04-17T12:52:16Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0025-584X es_ES
dc.identifier.uri http://hdl.handle.net/10251/140976
dc.description.abstract [EN] We show a picture of the relations among different types of summability of series in the space L-1(m) of integrable functions with respect to a vector measure m of relatively norm compact range. In order to do that, we study the class of the so-called m-1-summing operators. We give several applications regarding the existence of copies of c(0) in L-1(m), as well as on m-1-summing operators which are weakly compact, Asplund or weakly precompact. es_ES
dc.description.sponsorship The authors are very grateful to the anonymous referees for their comments, which improved the general shape of this work. This research was partially supported by Ministerio de Economia y Competitividad and FEDER under projects MTM2014-53009-P (J. M. Calabuig), MTM2014-54182-P (J. Rodriguez) and MTM2012-36740-c02-02 (E. A. Sanchez-Perez). The second author was also partially supported by project 19275/PI/14 funded by Fundacion Seneca Agencia de Ciencia y Tecnologia de la Region de Murcia within the framework of PCTIRM 2011-2014. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematische Nachrichten es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Vector measure es_ES
dc.subject Space of integrable functions es_ES
dc.subject Summability es_ES
dc.subject Summing operator es_ES
dc.subject Lebesgue-Bochner es_ES
dc.subject Space es_ES
dc.subject W*-thick set es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Summability in L-1 of a vector measure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mana.201600020 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-53009-P/ES/ANALISIS VECTORIAL, MULTILINEAL Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-54182-P/ES/TOPOLOGIA, ANALISIS Y CONJUNTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//19275%2FPI%2F14/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2012-36740-C02-02/ES/Operadores multilineales, espacios de funciones integrables y aplicaciones/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calabuig, JM.; Rodriguez, J.; Sánchez Pérez, EA. (2017). Summability in L-1 of a vector measure. Mathematische Nachrichten. 290(4):507-519. https://doi.org/10.1002/mana.201600020 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mana.201600020 es_ES
dc.description.upvformatpinicio 507 es_ES
dc.description.upvformatpfin 519 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 290 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\354832 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES
dc.description.references Abrahamsen, T. A., Nygaard, O., & Põldvere, M. (2006). On weak integrability and boundedness in Banach spaces. Journal of Mathematical Analysis and Applications, 314(1), 67-74. doi:10.1016/j.jmaa.2005.03.071 es_ES
dc.description.references Blasco, O., Calabuig, J. M., & Signes, T. (2008). A bilinear version of Orlicz–Pettis theorem. Journal of Mathematical Analysis and Applications, 348(1), 150-164. doi:10.1016/j.jmaa.2008.07.013 es_ES
dc.description.references Calabuig, J. M., Lajara, S., Rodríguez, J., & Sánchez-Pérez, E. A. (2014). Compactness in L1of a vector measure. Studia Mathematica, 225(3), 259-282. doi:10.4064/sm225-3-6 es_ES
dc.description.references Calabuig, J. M., Rodríguez, J., & Sánchez-Pérez, E. A. (2009). On the Structure of L1 of a Vector Measure via its Integration Operator. Integral Equations and Operator Theory, 64(1), 21-33. doi:10.1007/s00020-009-1670-5 es_ES
dc.description.references Curbera, G. P. (1992). Operators intoL 1 of a vector measure and applications to Banach lattices. Mathematische Annalen, 293(1), 317-330. doi:10.1007/bf01444717 es_ES
dc.description.references Curbera, G. (1994). WhenL1of a vector measure is an AL-space. Pacific Journal of Mathematics, 162(2), 287-303. doi:10.2140/pjm.1994.162.287 es_ES
dc.description.references Diestel, J., & Uhl, J. (1977). Vector Measures. Mathematical Surveys and Monographs. doi:10.1090/surv/015 es_ES
dc.description.references Elton, J. (1981). Extremely weakly unconditionally convergent series. Israel Journal of Mathematics, 40(3-4), 255-258. doi:10.1007/bf02761366 es_ES
dc.description.references I. Ferrando Duality in Spaces of p -integrable Functions with respect to a Vector Measure Ph.D. Thesis Universitat Politècnica de València 2009 https://riunet.upv.es/handle/10251/6242 es_ES
dc.description.references Ferrando, I. (2011). Factorization theorem for 1-summing operators. Czechoslovak Mathematical Journal, 61(3), 785-793. doi:10.1007/s10587-011-0027-9 es_ES
dc.description.references Ferrando, I., & Rodríguez, J. (2008). The weak topology on <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math> of a vector measure. Topology and its Applications, 155(13), 1439-1444. doi:10.1016/j.topol.2007.12.014 es_ES
dc.description.references Gasparis, I. (2008). On a problem of H.P. Rosenthal concerning operators on <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi>C</mml:mi><mml:mo stretchy=«false»>[</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=«false»>]</mml:mo></mml:math>. Advances in Mathematics, 218(5), 1512-1525. doi:10.1016/j.aim.2008.03.015 es_ES
dc.description.references González, M., & Martínez-Abejón, A. (2010). Tauberian Operators. doi:10.1007/978-3-7643-8998-7 es_ES
dc.description.references G. Manjabacas Topologies Associated to Norming Sets in Banach Spaces (Spanish) Ph.D. Thesis Universidad de Murcia 1998 http://webs.um.es/beca/dissertationstudents.html es_ES
dc.description.references Meyer-Nieberg, P. (1991). Banach Lattices. Universitext. doi:10.1007/978-3-642-76724-1 es_ES
dc.description.references Nygaard, O. (2006). Thick sets in banach spaces and their properties. Quaestiones Mathematicae, 29(1), 59-72. doi:10.2989/16073600609486149 es_ES
dc.description.references Okada, S. (1993). The Dual Space of L1(μ) for a Vector Measure μ. Journal of Mathematical Analysis and Applications, 177(2), 583-599. doi:10.1006/jmaa.1993.1279 es_ES
dc.description.references Okada, S., Ricker, W. J., & Rodríguez-Piazza, L. (2011). Operator ideal properties of vector measures with finite variation. Studia Mathematica, 205(3), 215-249. doi:10.4064/sm205-3-2 es_ES
dc.description.references Rosenthal, H. P. (1969). On quasi-complemented subspaces of Banach spaces, with an Appendix on compactness of operators from Lp(μ) to Lr(ν). Journal of Functional Analysis, 4(2), 176-214. doi:10.1016/0022-1236(69)90011-1 es_ES
dc.description.references Rueda, P., & Sánchez-Pérez, E. A. (2015). Compactness in spaces of p-integrable functions with respect to a vector measure. Topological Methods in Nonlinear Analysis, 45(2), 641. doi:10.12775/tmna.2015.030 es_ES
dc.description.references Sánchez Pérez, E. A. (2001). Compactness arguments for spaces of $p$-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces. Illinois Journal of Mathematics, 45(3), 907-923. doi:10.1215/ijm/1258138159 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem