Mostrar el registro sencillo del ítem
dc.contributor.author | Bivià-Ausina, Carles | es_ES |
dc.contributor.author | Huarcaya, Jorge Alberto C. | es_ES |
dc.date.accessioned | 2020-04-17T12:52:23Z | |
dc.date.available | 2020-04-17T12:52:23Z | |
dc.date.issued | 2019-03 | es_ES |
dc.identifier.issn | 0026-9255 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140980 | |
dc.description.abstract | [EN] In this article we characterize the polynomialmaps F : Cn. Cn for which F -1(0) is finite and their multiplicity mu(F) is equal to n! Vn( +(F)), where +(F) is the global Newton polyhedron of F. As an application, we derive a characterization of those polynomial maps whose multiplicity is maximal with respect to a fixed Newton filtration. | es_ES |
dc.description.sponsorship | Carles Bivia-Ausina was partially supported by DGICYT Grant MTM2015-64013-P. Jorge A. C. Huarcaya was partially supported by FAPESP-BEPE 2012/22365-8. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Monatshefte für Mathematik | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Complex polynomial maps | es_ES |
dc.subject | Milnor number | es_ES |
dc.subject | Multiplicity | es_ES |
dc.subject | Newton polyhedron | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Polynomial maps with maximal multiplicity and the special closure | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00605-018-1204-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-64013-P/ES/SINGULARIDADES, GEOMETRIA GENERICA Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPESP//2012%2F22365-8/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bivià-Ausina, C.; Huarcaya, JAC. (2019). Polynomial maps with maximal multiplicity and the special closure. Monatshefte für Mathematik. 188(3):413-429. https://doi.org/10.1007/s00605-018-1204-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00605-018-1204-9 | es_ES |
dc.description.upvformatpinicio | 413 | es_ES |
dc.description.upvformatpfin | 429 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 188 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\379480 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | es_ES |
dc.description.references | Artal Bartolo, E., Luengo, I.: On the topology of a generic fibre of a polynomial function. Commun. Algebra 28(4), 1767–1787 (2000) | es_ES |
dc.description.references | Artal Bartolo, E., Luengo, I., Melle-Hernández, A.: Milnor number at infinity, topology and Newton boundary of a polynomial function. Math. Z. 233(4), 679–696 (2000) | es_ES |
dc.description.references | Bivià-Ausina, C., Fukui, T., Saia, M.J.: Newton graded algebras and the codimension of non-degenerate ideals. Math. Proc. Camb. Philos. Soc. 133, 55–75 (2002) | es_ES |
dc.description.references | Bivià-Ausina, C., Huarcaya, J.A.C.: The special closure of polynomial maps and global non-degeneracy, Mediterr. J. Math. 14(2), Art. 71 (2017) | es_ES |
dc.description.references | Bivià-Ausina, C., Huarcaya, J.A.C.: Growth at infinity and index of polynomial maps. J. Math. Anal. Appl. 422, 1414–1433 (2015) | es_ES |
dc.description.references | Broughton, S.A.: Milnor numbers and the topology of polynomial hypersurfaces. Invent. Math. 92(2), 217–241 (1988) | es_ES |
dc.description.references | Cima, A., Gasull, A., Mañosas, F.: Injectivity of polynomial local homeomorphisms of $\mathbb{R}^n$. Nonlinear Anal. 26(4), 877–885 (1996) | es_ES |
dc.description.references | Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, Berlin (2005) | es_ES |
dc.description.references | Cygan, E., Krasiński, T., Tworzewski, P.: Separation of algebraic sets and the Łojasiewicz exponent of polynomial mappings. Invent. Math. 136(1), 75–87 (1999) | es_ES |
dc.description.references | Furuya, M., Tomari, M.: A characterization of semi-quasihomogeneous functions in terms of the Milnor number. Proc. Am. Math. Soc. 132(7), 1885–1889 (2004) | es_ES |
dc.description.references | Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III. Inst. Hautes Études Sci. Publ. Math 28, 255 (1966) | es_ES |
dc.description.references | Hà Huy, V., Zaharia, A.: Families of polynomials with total Milnor number constant. Math. Ann. 304(3), 481–488 (1996) | es_ES |
dc.description.references | Hochster, M.: Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes. Ann. Math. (2) 96, 318–337 (1972) | es_ES |
dc.description.references | Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules. London Math. Soc. Lecture Note Series 336. Cambridge University Press, Cambridge (2006) | es_ES |
dc.description.references | Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976) | es_ES |
dc.description.references | Li, T.Y., Wang, X.: The BKK root count in $\mathbb{C}^n$. Math. Comput. 65(216), 1477–1484 (1996) | es_ES |
dc.description.references | Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge (1986) | es_ES |
dc.description.references | Rojas, J.M.: A convex geometric approach to counting the roots of a polynomial system. Theor. Comput. Sci. 133(1), 105–140 (1994) | es_ES |
dc.description.references | Saia, M.J.: Pre-weighted homogeneous map germs-finite determinacy and topological triviality. Nagoya Math. J. 151, 209–220 (1998) | es_ES |
dc.description.references | Vasconcelos, W.: Integral Closure. Rees Algebras, Multiplicities, Algorithms. Springer Monographs in Mathematics. Springer, Berlin (2005) | es_ES |