- -

Polynomial maps with maximal multiplicity and the special closure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polynomial maps with maximal multiplicity and the special closure

Mostrar el registro completo del ítem

Bivià-Ausina, C.; Huarcaya, JAC. (2019). Polynomial maps with maximal multiplicity and the special closure. Monatshefte für Mathematik. 188(3):413-429. https://doi.org/10.1007/s00605-018-1204-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140980

Ficheros en el ítem

Metadatos del ítem

Título: Polynomial maps with maximal multiplicity and the special closure
Autor: Bivià-Ausina, Carles Huarcaya, Jorge Alberto C.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this article we characterize the polynomialmaps F : Cn. Cn for which F -1(0) is finite and their multiplicity mu(F) is equal to n! Vn( +(F)), where +(F) is the global Newton polyhedron of F. As an application, we ...[+]
Palabras clave: Complex polynomial maps , Milnor number , Multiplicity , Newton polyhedron
Derechos de uso: Reserva de todos los derechos
Fuente:
Monatshefte für Mathematik. (issn: 0026-9255 )
DOI: 10.1007/s00605-018-1204-9
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00605-018-1204-9
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2015-64013-P/ES/SINGULARIDADES, GEOMETRIA GENERICA Y APLICACIONES/
info:eu-repo/grantAgreement/FAPESP//2012%2F22365-8/
Agradecimientos:
Carles Bivia-Ausina was partially supported by DGICYT Grant MTM2015-64013-P. Jorge A. C. Huarcaya was partially supported by FAPESP-BEPE 2012/22365-8.
Tipo: Artículo

References

Artal Bartolo, E., Luengo, I.: On the topology of a generic fibre of a polynomial function. Commun. Algebra 28(4), 1767–1787 (2000)

Artal Bartolo, E., Luengo, I., Melle-Hernández, A.: Milnor number at infinity, topology and Newton boundary of a polynomial function. Math. Z. 233(4), 679–696 (2000)

Bivià-Ausina, C., Fukui, T., Saia, M.J.: Newton graded algebras and the codimension of non-degenerate ideals. Math. Proc. Camb. Philos. Soc. 133, 55–75 (2002) [+]
Artal Bartolo, E., Luengo, I.: On the topology of a generic fibre of a polynomial function. Commun. Algebra 28(4), 1767–1787 (2000)

Artal Bartolo, E., Luengo, I., Melle-Hernández, A.: Milnor number at infinity, topology and Newton boundary of a polynomial function. Math. Z. 233(4), 679–696 (2000)

Bivià-Ausina, C., Fukui, T., Saia, M.J.: Newton graded algebras and the codimension of non-degenerate ideals. Math. Proc. Camb. Philos. Soc. 133, 55–75 (2002)

Bivià-Ausina, C., Huarcaya, J.A.C.: The special closure of polynomial maps and global non-degeneracy, Mediterr. J. Math. 14(2), Art. 71 (2017)

Bivià-Ausina, C., Huarcaya, J.A.C.: Growth at infinity and index of polynomial maps. J. Math. Anal. Appl. 422, 1414–1433 (2015)

Broughton, S.A.: Milnor numbers and the topology of polynomial hypersurfaces. Invent. Math. 92(2), 217–241 (1988)

Cima, A., Gasull, A., Mañosas, F.: Injectivity of polynomial local homeomorphisms of $\mathbb{R}^n$. Nonlinear Anal. 26(4), 877–885 (1996)

Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, Berlin (2005)

Cygan, E., Krasiński, T., Tworzewski, P.: Separation of algebraic sets and the Łojasiewicz exponent of polynomial mappings. Invent. Math. 136(1), 75–87 (1999)

Furuya, M., Tomari, M.: A characterization of semi-quasihomogeneous functions in terms of the Milnor number. Proc. Am. Math. Soc. 132(7), 1885–1889 (2004)

Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III. Inst. Hautes Études Sci. Publ. Math 28, 255 (1966)

Hà Huy, V., Zaharia, A.: Families of polynomials with total Milnor number constant. Math. Ann. 304(3), 481–488 (1996)

Hochster, M.: Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes. Ann. Math. (2) 96, 318–337 (1972)

Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules. London Math. Soc. Lecture Note Series 336. Cambridge University Press, Cambridge (2006)

Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976)

Li, T.Y., Wang, X.: The BKK root count in $\mathbb{C}^n$. Math. Comput. 65(216), 1477–1484 (1996)

Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge (1986)

Rojas, J.M.: A convex geometric approach to counting the roots of a polynomial system. Theor. Comput. Sci. 133(1), 105–140 (1994)

Saia, M.J.: Pre-weighted homogeneous map germs-finite determinacy and topological triviality. Nagoya Math. J. 151, 209–220 (1998)

Vasconcelos, W.: Integral Closure. Rees Algebras, Multiplicities, Algorithms. Springer Monographs in Mathematics. Springer, Berlin (2005)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem