. A Posteriori Error Estimation in Finite Element Analysis. Wiley: Chichester, 2000.
. Adaptive Finite Element Methods for Differential Equations. Birkhäuser: Basel, 2003.
Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206
[+]
. A Posteriori Error Estimation in Finite Element Analysis. Wiley: Chichester, 2000.
. Adaptive Finite Element Methods for Differential Equations. Birkhäuser: Basel, 2003.
Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206
Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery (SPR) and adaptive finite element refinement. Computer Methods in Applied Mechanics and Engineering, 101(1-3), 207-224. doi:10.1016/0045-7825(92)90023-d
Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364. doi:10.1002/nme.1620330702
Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity. International Journal for Numerical Methods in Engineering, 33(7), 1365-1382. doi:10.1002/nme.1620330703
Babuška, I., Strouboulis, T., & Upadhyay, C. . (1994). A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Computer Methods in Applied Mechanics and Engineering, 114(3-4), 307-378. doi:10.1016/0045-7825(94)90177-5
Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K., & Copps, K. (1994). Validation ofa posteriori error estimators by numerical approach. International Journal for Numerical Methods in Engineering, 37(7), 1073-1123. doi:10.1002/nme.1620370702
Díez, P., JoséEgozcue, J., & Huerta, A. (1998). A posteriori error estimation for standard finite element analysis. Computer Methods in Applied Mechanics and Engineering, 163(1-4), 141-157. doi:10.1016/s0045-7825(98)00009-7
Díez, P., Parés, N., & Huerta, A. (2003). Recovering lower bounds of the error by postprocessing implicit residuala posteriorierror estimates. International Journal for Numerical Methods in Engineering, 56(10), 1465-1488. doi:10.1002/nme.620
Wiberg, N.-E., & Abdulwahab, F. (1993). Patch recovery based on superconvergent derivatives and equilibrium. International Journal for Numerical Methods in Engineering, 36(16), 2703-2724. doi:10.1002/nme.1620361603
Wiberg, N.-E., Abdulwahab, F., & Ziukas, S. (1994). Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. International Journal for Numerical Methods in Engineering, 37(20), 3417-3440. doi:10.1002/nme.1620372003
Blacker, T., & Belytschko, T. (1994). Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. International Journal for Numerical Methods in Engineering, 37(3), 517-536. doi:10.1002/nme.1620370309
Ramsay, A. C. A., & Maunder, E. A. W. (1996). Effective error sttimation from continous, boundary admissible estimated stress fields. Computers & Structures, 61(2), 331-343. doi:10.1016/0045-7949(96)00034-x
LEE, T., PARK, H. C., & LEE, S. W. (1997). A SUPERCONVERGENT STRESS RECOVERY TECHNIQUE WITH EQUILIBRIUM CONSTRAINT. International Journal for Numerical Methods in Engineering, 40(6), 1139-1160. doi:10.1002/(sici)1097-0207(19970330)40:6<1139::aid-nme106>3.0.co;2-0
Aalto, J. (1997). Built-in field equations for recovery procedures. Computers & Structures, 64(1-4), 157-176. doi:10.1016/s0045-7949(96)00159-9
Aalto, J., & Isoherranen, H. (1997). An element by element recovery method with built-in field equations. Computers & Structures, 64(1-4), 177-196. doi:10.1016/s0045-7949(96)00155-1
Aalto, J., & Perälä, M. (1999). Built-in field equations for patch recovery procedures using weighted residuals. Computers & Structures, 73(1-5), 91-118. doi:10.1016/s0045-7949(98)00283-1
Aalto, J., & Åman, M. (1999). Polynomial representations for patch recovery procedures. Computers & Structures, 73(1-5), 119-146. doi:10.1016/s0045-7949(98)00282-x
BOROOMAND, B., & ZIENKIEWICZ, O. C. (1997). RECOVERY BY EQUILIBRIUM IN PATCHES (REP). International Journal for Numerical Methods in Engineering, 40(1), 137-164. doi:10.1002/(sici)1097-0207(19970115)40:1<137::aid-nme57>3.0.co;2-5
Kvamsdal, T., & Okstad, K. M. (1998). Error estimation based on Superconvergent Patch Recovery using statically admissible stress fields. International Journal for Numerical Methods in Engineering, 42(3), 443-472. doi:10.1002/(sici)1097-0207(19980615)42:3<443::aid-nme366>3.0.co;2-g
Park, H. C., Shin, S.-H., & Lee, S. W. (1999). A superconvergent stress recovery technique for accurate boundary stress extraction. International Journal for Numerical Methods in Engineering, 45(9), 1227-1242. doi:10.1002/(sici)1097-0207(19990730)45:9<1227::aid-nme627>3.0.co;2-w
, , . Modification of the SPR technique to ensure the fulfillment of imposed tractions in boundary nodes. In Adaptive Modeling and Simulation, (eds), vol. I. CIMNE, 2003.
, , . Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Preprint.
Abel, J. F., & Shephard, M. S. (1979). An algorithm for multipoint constraints in finite element analysis. International Journal for Numerical Methods in Engineering, 14(3), 464-467. doi:10.1002/nme.1620140312
Farhat, C., Lacour, C., & Rixen, D. (1998). Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm. International Journal for Numerical Methods in Engineering, 43(6), 997-1016. doi:10.1002/(sici)1097-0207(19981130)43:6<997::aid-nme455>3.0.co;2-b
Ainsworth, M., & Oden, J. T. (1992). A procedure for a posteriori error estimation for h-p finite element methods. Computer Methods in Applied Mechanics and Engineering, 101(1-3), 73-96. doi:10.1016/0045-7825(92)90016-d
. Theory of Elasticity 2nd edn.McGraw-Hill: New York, 1951.
. Finite Element Analysis 1st edn.Wiley: New York, 1991.
[-]