- -

Enhanced conductivity of sodium versus lithium salts. Sodium metallacarboranes as electrolyte

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced conductivity of sodium versus lithium salts. Sodium metallacarboranes as electrolyte

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fuentes, I. es_ES
dc.contributor.author Andrio, Andreu es_ES
dc.contributor.author Teixidor, F. es_ES
dc.contributor.author Viñas, Clara es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.date.accessioned 2020-04-22T08:00:40Z
dc.date.available 2020-04-22T08:00:40Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1463-9076 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141284
dc.description.abstract [EN] The development of new types of ion conducting materials is one of the most important challenges in the field of energy. Lithium salt polymer electrolytes have been the most convenient, and thus the most widely used in the design of the new generation of batteries. However, in this work, we have observed that Na+ ions provide a higher conductivity, or at least a comparable conductivity to that of Li+ ions in the same basic material. This provides an excellent possibility to use Na+ ions in the design of a new generation of batteries, instead of lithium, to enhance conductivity and ensure wide supply. Our results indicate that the dc-conductivity is larger when the anion is [Co(C2B9H11)(2)](-), [COSANE](-), compared to tetraphenylborate, [TPB](-). Our data also prove that the dc-conductivity behavior of Li+ and Na+ salts is opposite with the two anions. At 40 C-omicron, the conductivity values change from 1.05 x 10(-2) S cm(-1) (Li[COSANE]) and 1.75 x 10(-2) S cm(-1) (Na[COSANE]) to 2.8 x 10(-3) S cm(-1) (Li[TPB]) and 1.5 x 10(-3) S cm(-1) (Na[TPB]). These findings indicate that metallacarboranes can be useful components of mixed matrix membranes (MMMs), providing excellent conductivity when the medium contains sufficient amounts of ionic components and a certain degree of humidity. es_ES
dc.description.sponsorship This research has been supported by the ENE/2015-69203-R and CTQ2013-44670-R projects, granted by the Ministerio de Economia y Competitividad (MINECO), Spain; the Generalitat de Catalunya (2014/SGR/149) and FP7-OCEAN-2013: Proposal number: 614168. C. V. thanks COST CM1302 project. I. F. is enrolled in the PhD program of the UAB. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Enhanced conductivity of sodium versus lithium salts. Sodium metallacarboranes as electrolyte es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7cp02526b es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/614168/EU/Real time monitoring of SEA contaminants by an autonomous Lab-on-a-chip biosensor/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 149/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CM1302/EU/European Network on Smart Inorganic Polymers/SIPs/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-44670-R/ES/DESARROLLO DE MATERIALES BASADOS EN BORO PARA FUENTES DE ENERGIA RENOVABLES Y EFICIENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Fuentes, I.; Andrio, A.; Teixidor, F.; Viñas, C.; Compañ Moreno, V. (2017). Enhanced conductivity of sodium versus lithium salts. Sodium metallacarboranes as electrolyte. Physical Chemistry Chemical Physics. 15177(15186):15177-15186. https://doi.org/10.1039/c7cp02526b es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c7cp02526b es_ES
dc.description.upvformatpinicio 15177 es_ES
dc.description.upvformatpfin 15186 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15177 es_ES
dc.description.issue 15186 es_ES
dc.relation.pasarela S\351349 es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bakangura, E., Wu, L., Ge, L., Yang, Z., & Xu, T. (2016). Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 57, 103-152. doi:10.1016/j.progpolymsci.2015.11.004 es_ES
dc.description.references Lufrano, F., Baglio, V., Staiti, P., Antonucci, V., & Arico’, A. S. (2013). Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 243, 519-534. doi:10.1016/j.jpowsour.2013.05.180 es_ES
dc.description.references Jiang, S. P. (2014). Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells. J. Mater. Chem. A, 2(21), 7637-7655. doi:10.1039/c4ta00121d es_ES
dc.description.references Heo, Y., Im, H., & Kim, J. (2013). The effect of sulfonated graphene oxide on Sulfonated Poly (Ether Ether Ketone) membrane for direct methanol fuel cells. Journal of Membrane Science, 425-426, 11-22. doi:10.1016/j.memsci.2012.09.019 es_ES
dc.description.references Mishra, A. K., Kim, N. H., Jung, D., & Lee, J. H. (2014). Enhanced mechanical properties and proton conductivity of Nafion–SPEEK–GO composite membranes for fuel cell applications. Journal of Membrane Science, 458, 128-135. doi:10.1016/j.memsci.2014.01.073 es_ES
dc.description.references Rambabu, G., & Bhat, S. D. (2014). Simultaneous tuning of methanol crossover and ionic conductivity of sPEEK membrane electrolyte by incorporation of PSSA functionalized MWCNTs: A comparative study in DMFCs. Chemical Engineering Journal, 243, 517-525. doi:10.1016/j.cej.2014.01.030 es_ES
dc.description.references Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., & Kumar, R. (2013). Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 38(8), 1232-1261. doi:10.1016/j.progpolymsci.2013.02.003 es_ES
dc.description.references Zeng, J., He, B., Lamb, K., De Marco, R., Shen, P. K., & Jiang, S. P. (2013). Phosphoric acid functionalized pre-sintered meso-silica for high temperature proton exchange membrane fuel cells. Chemical Communications, 49(41), 4655. doi:10.1039/c3cc41716f es_ES
dc.description.references Paddison, S. J. (2003). Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes. Annual Review of Materials Research, 33(1), 289-319. doi:10.1146/annurev.matsci.33.022702.155102 es_ES
dc.description.references Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35(17), 9349-9384. doi:10.1016/j.ijhydene.2010.05.017 es_ES
dc.description.references Kreuer, K.-D. (1996). Proton Conductivity:  Materials and Applications. Chemistry of Materials, 8(3), 610-641. doi:10.1021/cm950192a es_ES
dc.description.references Kreuer, K.-D., Paddison, S. J., Spohr, E., & Schuster, M. (2004). Transport in Proton Conductors for Fuel-Cell Applications:  Simulations, Elementary Reactions, and Phenomenology. Chemical Reviews, 104(10), 4637-4678. doi:10.1021/cr020715f es_ES
dc.description.references Wang, C., Chalkova, E., Lute, C. D., Fedkin, M. V., Komarneni, S., Chung, T. C. M., & Lvov, S. N. (2010). Proton Conductive Inorganic Materials for Temperatures Up to 120°C and Relative Humidity Down to 5%. Journal of The Electrochemical Society, 157(11), B1634. doi:10.1149/1.3486113 es_ES
dc.description.references Hara, S. (2002). Proton-conducting properties of hydrated tin dioxide as an electrolyte for fuel cells at intermediate temperature. Solid State Ionics, 154-155, 679-685. doi:10.1016/s0167-2738(02)00517-9 es_ES
dc.description.references Yang, Q., Kapoor, M. P., & Inagaki, S. (2002). Sulfuric Acid-Functionalized Mesoporous Benzene−Silica with a Molecular-Scale Periodicity in the Walls. Journal of the American Chemical Society, 124(33), 9694-9695. doi:10.1021/ja026799r es_ES
dc.description.references Margolese, D., Melero, J. A., Christiansen, S. C., Chmelka, B. F., & Stucky, G. D. (2000). Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups. Chemistry of Materials, 12(8), 2448-2459. doi:10.1021/cm0010304 es_ES
dc.description.references Jin, Y. G., Qiao, S. Z., Xu, Z. P., Diniz da Costa, J. C., & Lu, G. Q. (2009). Porous Silica Nanospheres Functionalized with Phosphonic Acid as Intermediate-Temperature Proton Conductors. The Journal of Physical Chemistry C, 113(8), 3157-3163. doi:10.1021/jp810112c es_ES
dc.description.references Fujita, S., Koiwai, A., Kawasumi, M., & Inagaki, S. (2013). Enhancement of Proton Transport by High Densification of Sulfonic Acid Groups in Highly Ordered Mesoporous Silica. Chemistry of Materials, 25(9), 1584-1591. doi:10.1021/cm303950u es_ES
dc.description.references Ponomareva, V. ., & Lavrova, G. . (2001). The investigation of disordered phases in nanocomposite proton electrolytes based on MeHSO4 (Me=Rb, Cs, K). Solid State Ionics, 145(1-4), 197-204. doi:10.1016/s0167-2738(01)00957-2 es_ES
dc.description.references Vijayakumar, M., Bain, A. D., & Goward, G. R. (2009). Investigations of Proton Conduction in the Monoclinic Phase of RbH2PO4 Using Multinuclear Solid-State NMR. The Journal of Physical Chemistry C, 113(41), 17950-17957. doi:10.1021/jp903408v es_ES
dc.description.references Hara, S., Takano, S., & Miyayama, M. (2004). Proton-Conducting Properties and Microstructure of Hydrated Tin Dioxide and Hydrated Zirconia. The Journal of Physical Chemistry B, 108(18), 5634-5639. doi:10.1021/jp0370369 es_ES
dc.description.references Kozawa, Y., Suzuki, S., Miyayama, M., Okumiya, T., & Traversa, E. (2010). Proton conducting membranes composed of sulfonated poly(etheretherketone) and zirconium phosphate nanosheets for fuel cell applications. Solid State Ionics, 181(5-7), 348-353. doi:10.1016/j.ssi.2009.12.017 es_ES
dc.description.references Abbaraju, R. R., Dasgupta, N., & Virkar, A. V. (2008). Composite Nafion Membranes Containing Nanosize TiO[sub 2]∕SnO[sub 2] for Proton Exchange Membrane Fuel Cells. Journal of The Electrochemical Society, 155(12), B1307. doi:10.1149/1.2994079 es_ES
dc.description.references Chalkova, E., Fedkin, M. V., Wesolowski, D. J., & Lvov, S. N. (2005). Effect of TiO[sub 2] Surface Properties on Performance of Nafion-Based Composite Membranes in High Temperature and Low Relative Humidity PEM Fuel Cells. Journal of The Electrochemical Society, 152(9), A1742. doi:10.1149/1.1971216 es_ES
dc.description.references Sahu, A. K., Selvarani, G., Pitchumani, S., Sridhar, P., & Shukla, A. K. (2007). A Sol-Gel Modified Alternative Nafion-Silica Composite Membrane for Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society, 154(2), B123. doi:10.1149/1.2401031 es_ES
dc.description.references González-Cardoso, P., Stoica, A.-I., Farràs, P., Pepiol, A., Viñas, C., & Teixidor, F. (2010). Additive Tuning of Redox Potential in Metallacarboranes by Sequential Halogen Substitution. Chemistry - A European Journal, 16(22), 6660-6665. doi:10.1002/chem.200902558 es_ES
dc.description.references Pepiol, A., Teixidor, F., Sillanpää, R., Lupu, M., & Viñas, C. (2011). Stepwise Sequential Redox Potential Modulation Possible on a Single Platform. Angewandte Chemie International Edition, 50(52), 12491-12495. doi:10.1002/anie.201105668 es_ES
dc.description.references Tarrés, M., Arderiu, V. S., Zaulet, A., Viñas, C., Fabrizi de Biani, F., & Teixidor, F. (2015). How to get the desired reduction voltage in a single framework! Metallacarborane as an optimal probe for sequential voltage tuning. Dalton Transactions, 44(26), 11690-11695. doi:10.1039/c5dt01464f es_ES
dc.description.references Teixidor, F., Viñas, C., Demonceau, A., & Nuñez, R. (2003). Boron clusters: Do they receive the deserved interest? Pure and Applied Chemistry, 75(9), 1305-1313. doi:10.1351/pac200375091305 es_ES
dc.description.references Olid, D., Núñez, R., Viñas, C., & Teixidor, F. (2013). Methods to produce B–C, B–P, B–N and B–S bonds in boron clusters. Chemical Society Reviews, 42(8), 3318. doi:10.1039/c2cs35441a es_ES
dc.description.references Bauduin, P., Prevost, S., Farràs, P., Teixidor, F., Diat, O., & Zemb, T. (2011). A Theta-Shaped Amphiphilic Cobaltabisdicarbollide Anion: Transition From Monolayer Vesicles to Micelles. Angewandte Chemie International Edition, 50(23), 5298-5300. doi:10.1002/anie.201100410 es_ES
dc.description.references Brusselle, D., Bauduin, P., Girard, L., Zaulet, A., Viñas, C., Teixidor, F., … Diat, O. (2013). Lyotropic Lamellar Phase Formed from Monolayered θ-Shaped Carborane-Cage Amphiphiles. Angewandte Chemie International Edition, 52(46), 12114-12118. doi:10.1002/anie.201307357 es_ES
dc.description.references Gassin, P.-M., Girard, L., Martin-Gassin, G., Brusselle, D., Jonchère, A., Diat, O., … Bauduin, P. (2015). Surface Activity and Molecular Organization of Metallacarboranes at the Air–Water Interface Revealed by Nonlinear Optics. Langmuir, 31(8), 2297-2303. doi:10.1021/acs.langmuir.5b00125 es_ES
dc.description.references Ďorďovič, V., Tošner, Z., Uchman, M., Zhigunov, A., Reza, M., Ruokolainen, J., … Matějíček, P. (2016). Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters. Langmuir, 32(26), 6713-6722. doi:10.1021/acs.langmuir.6b01995 es_ES
dc.description.references Uchman, M., Ďorďovič, V., Tošner, Z., & Matějíček, P. (2015). Classical Amphiphilic Behavior of Nonclassical Amphiphiles: A Comparison of Metallacarborane Self-Assembly with SDS Micellization. Angewandte Chemie International Edition, 54(47), 14113-14117. doi:10.1002/anie.201506545 es_ES
dc.description.references Núñez, R., Romero, I., Teixidor, F., & Viñas, C. (2016). Icosahedral boron clusters: a perfect tool for the enhancement of polymer features. Chemical Society Reviews, 45(19), 5147-5173. doi:10.1039/c6cs00159a es_ES
dc.description.references Núñez, R., Tarrés, M., Ferrer-Ugalde, A., de Biani, F. F., & Teixidor, F. (2016). Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chemical Reviews, 116(23), 14307-14378. doi:10.1021/acs.chemrev.6b00198 es_ES
dc.description.references Masalles, C., Borrós, S., Viñas, C., & Teixidor, F. (2000). Are Low-Coordinating Anions of Interest as Doping Agents in Organic Conducting Polymers? Advanced Materials, 12(16), 1199-1202. doi:10.1002/1521-4095(200008)12:16<1199::aid-adma1199>3.0.co;2-w es_ES
dc.description.references Masalles, C., Borrós, S., Viñas, C., & Teixidor, F. (2002). Surface Layer Formation on Polypyrrole Films. Advanced Materials, 14(6), 449-452. doi:10.1002/1521-4095(20020318)14:6<449::aid-adma449>3.0.co;2-4 es_ES
dc.description.references Fabre, B., Clark, J. C., & Vicente, M. G. H. (2006). Synthesis and Electrochemistry of Carboranylpyrroles. Toward the Preparation of Electrochemically and Thermally Resistant Conjugated Polymers. Macromolecules, 39(1), 112-119. doi:10.1021/ma051508v es_ES
dc.description.references Hao, E., Fabre, B., Fronczek, F. R., & Vicente, M. G. H. (2007). Syntheses and Electropolymerization of Carboranyl-Functionalized Pyrroles and Thiophenes. Chemistry of Materials, 19(25), 6195-6205. doi:10.1021/cm701935n es_ES
dc.description.references Masalles, C., Teixidor, F., Borrós, S., & Viñas, C. (2002). Cobaltabisdicarbollide anion [Co(C2B9H11)2]− as doping agent on intelligent membranes for ion capture. Journal of Organometallic Chemistry, 657(1-2), 239-246. doi:10.1016/s0022-328x(02)01432-8 es_ES
dc.description.references Masalles, C., Llop, J., Viñas, C., & Teixidor, F. (2002). Extraordinary Overoxidation Resistance Increase in Self-Doped Polypyrroles by Using Non-conventional Low Charge-Density Anions. Advanced Materials, 14(11), 826. doi:10.1002/1521-4095(20020605)14:11<826::aid-adma826>3.0.co;2-c es_ES
dc.description.references Suárez-Guevara, J., Ruiz, V., & Gómez-Romero, P. (2014). Stable graphene–polyoxometalate nanomaterials for application in hybrid supercapacitors. Phys. Chem. Chem. Phys., 16(38), 20411-20414. doi:10.1039/c4cp03321c es_ES
dc.description.references Carrette, L., Friedrich, K. A., & Stimming, U. (2000). Fuel Cells: Principles, Types, Fuels, and Applications. ChemPhysChem, 1(4), 162-193. doi:10.1002/1439-7641(20001215)1:4<162::aid-cphc162>3.0.co;2-z es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Son, H.-J., Jin, S., Patwardhan, S., Wezenberg, S. J., Jeong, N. C., So, M., … Hupp, J. T. (2013). Light-Harvesting and Ultrafast Energy Migration in Porphyrin-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 135(2), 862-869. doi:10.1021/ja310596a es_ES
dc.description.references Ren, Y., Chia, G. H., & Gao, Z. (2013). Metal–organic frameworks in fuel cell technologies. Nano Today, 8(6), 577-597. doi:10.1016/j.nantod.2013.11.004 es_ES
dc.description.references Fernández-Carretero, F. J., Compañ, V., & Riande, E. (2007). Hybrid ion-exchange membranes for fuel cells and separation processes. Journal of Power Sources, 173(1), 68-76. doi:10.1016/j.jpowsour.2007.07.011 es_ES
dc.description.references J. C. Maxwell , A treatise of Electricity & Magnetism, Dover, NY, 1954 es_ES
dc.description.references Wagner, K. W. (1914). Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Archiv für Elektrotechnik, 2(9), 371-387. doi:10.1007/bf01657322 es_ES
dc.description.references Wagner, K. W. (1914). Dielektrische Eigenschaften von verschiedenen Isolierstoffen. Archiv für Elektrotechnik, 3(3-4), 67-106. doi:10.1007/bf01657563 es_ES
dc.description.references Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638 es_ES
dc.description.references Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700 es_ES
dc.description.references Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4 es_ES
dc.description.references Munar, A., Andrio, A., Iserte, R., & Compañ, V. (2011). Ionic conductivity and diffusion coefficients of lithium salt polymer electrolytes measured with dielectric spectroscopy. Journal of Non-Crystalline Solids, 357(16-17), 3064-3069. doi:10.1016/j.jnoncrysol.2011.04.012 es_ES
dc.description.references Compañ, V., Smith So/rensen, T., Diaz‐Calleja, R., & Riande, E. (1996). Diffusion coefficients of conductive ions in a copolymer of vinylidene cyanide and vinyl acetate obtained from dielectric measurements using the model of Trukhan. Journal of Applied Physics, 79(1), 403-411. doi:10.1063/1.360844 es_ES
dc.description.references Wang, Y., Fan, F., Agapov, A. L., Saito, T., Yang, J., Yu, X., … Sokolov, A. P. (2014). Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 55(16), 4067-4076. doi:10.1016/j.polymer.2014.06.085 es_ES
dc.description.references Sangoro, J. R., Iacob, C., Agapov, A. L., Wang, Y., Berdzinski, S., Rexhausen, H., … Kremer, F. (2014). Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids. Soft Matter, 10(20), 3536-3540. doi:10.1039/c3sm53202j es_ES
dc.description.references Weingärtner, H. (2014). The static dielectric permittivity of ionic liquids. Journal of Molecular Liquids, 192, 185-190. doi:10.1016/j.molliq.2013.07.020 es_ES
dc.description.references Huang, M.-M., Jiang, Y., Sasisanker, P., Driver, G. W., & Weingärtner, H. (2011). Static Relative Dielectric Permittivities of Ionic Liquids at 25 °C. Journal of Chemical & Engineering Data, 56(4), 1494-1499. doi:10.1021/je101184s es_ES
dc.description.references Sadakiyo, M., Yamada, T., & Kitagawa, H. (2009). Rational Designs for Highly Proton-Conductive Metal−Organic Frameworks. Journal of the American Chemical Society, 131(29), 9906-9907. doi:10.1021/ja9040016 es_ES
dc.description.references Barbosa, P., Rosero-Navarro, N. C., Shi, F.-N., & Figueiredo, F. M. L. (2015). Protonic Conductivity of Nanocrystalline Zeolitic Imidazolate Framework 8. Electrochimica Acta, 153, 19-27. doi:10.1016/j.electacta.2014.11.093 es_ES
dc.description.references Krause, C., Sangoro, J. R., Iacob, C., & Kremer, F. (2010). Charge Transport and Dipolar Relaxations in Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B, 114(1), 382-386. doi:10.1021/jp908519u es_ES
dc.description.references Rivera, A., & Rössler, E. A. (2006). Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Physical Review B, 73(21). doi:10.1103/physrevb.73.212201 es_ES
dc.description.references Sangoro, J. R., Mierzwa, M., Iacob, C., Paluch, M., & Kremer, F. (2012). Brownian dynamics determine universality of charge transport in ionic liquids. RSC Advances, 2(12), 5047. doi:10.1039/c2ra20560b es_ES
dc.description.references Namikawa, H. (1974). Multichannel conduction in alkali silicate glasses. Journal of Non-Crystalline Solids, 14(1), 88-100. doi:10.1016/0022-3093(74)90021-0 es_ES
dc.description.references Namikawa, H. (1975). Characterization of the diffusion process in oxide glasses based on the correlation between electric conduction and dielectric relaxation. Journal of Non-Crystalline Solids, 18(2), 173-195. doi:10.1016/0022-3093(75)90019-8 es_ES
dc.description.references Macdonald, J. R. (2010). Addendum to «Fundamental questions relating to ion conduction in disordered solids». Journal of Applied Physics, 107(10), 101101. doi:10.1063/1.3359703 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem