- -

Enhanced conductivity of sodium versus lithium salts. Sodium metallacarboranes as electrolyte

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced conductivity of sodium versus lithium salts. Sodium metallacarboranes as electrolyte

Mostrar el registro completo del ítem

Fuentes, I.; Andrio, A.; Teixidor, F.; Viñas, C.; Compañ Moreno, V. (2017). Enhanced conductivity of sodium versus lithium salts. Sodium metallacarboranes as electrolyte. Physical Chemistry Chemical Physics. 15177(15186):15177-15186. https://doi.org/10.1039/c7cp02526b

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141284

Ficheros en el ítem

Metadatos del ítem

Título: Enhanced conductivity of sodium versus lithium salts. Sodium metallacarboranes as electrolyte
Autor: Fuentes, I. Andrio, Andreu Teixidor, F. Viñas, Clara Compañ Moreno, Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] The development of new types of ion conducting materials is one of the most important challenges in the field of energy. Lithium salt polymer electrolytes have been the most convenient, and thus the most widely used ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Chemistry Chemical Physics. (issn: 1463-9076 )
DOI: 10.1039/c7cp02526b
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c7cp02526b
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/614168/EU/Real time monitoring of SEA contaminants by an autonomous Lab-on-a-chip biosensor/
info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 149/
info:eu-repo/grantAgreement/COST//CM1302/EU/European Network on Smart Inorganic Polymers/SIPs/
info:eu-repo/grantAgreement/MINECO//CTQ2013-44670-R/ES/DESARROLLO DE MATERIALES BASADOS EN BORO PARA FUENTES DE ENERGIA RENOVABLES Y EFICIENTES/
Agradecimientos:
This research has been supported by the ENE/2015-69203-R and CTQ2013-44670-R projects, granted by the Ministerio de Economia y Competitividad (MINECO), Spain; the Generalitat de Catalunya (2014/SGR/149) and FP7-OCEAN-2013: ...[+]
Tipo: Artículo

References

Bakangura, E., Wu, L., Ge, L., Yang, Z., & Xu, T. (2016). Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 57, 103-152. doi:10.1016/j.progpolymsci.2015.11.004

Lufrano, F., Baglio, V., Staiti, P., Antonucci, V., & Arico’, A. S. (2013). Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 243, 519-534. doi:10.1016/j.jpowsour.2013.05.180

Jiang, S. P. (2014). Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells. J. Mater. Chem. A, 2(21), 7637-7655. doi:10.1039/c4ta00121d [+]
Bakangura, E., Wu, L., Ge, L., Yang, Z., & Xu, T. (2016). Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 57, 103-152. doi:10.1016/j.progpolymsci.2015.11.004

Lufrano, F., Baglio, V., Staiti, P., Antonucci, V., & Arico’, A. S. (2013). Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 243, 519-534. doi:10.1016/j.jpowsour.2013.05.180

Jiang, S. P. (2014). Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells. J. Mater. Chem. A, 2(21), 7637-7655. doi:10.1039/c4ta00121d

Heo, Y., Im, H., & Kim, J. (2013). The effect of sulfonated graphene oxide on Sulfonated Poly (Ether Ether Ketone) membrane for direct methanol fuel cells. Journal of Membrane Science, 425-426, 11-22. doi:10.1016/j.memsci.2012.09.019

Mishra, A. K., Kim, N. H., Jung, D., & Lee, J. H. (2014). Enhanced mechanical properties and proton conductivity of Nafion–SPEEK–GO composite membranes for fuel cell applications. Journal of Membrane Science, 458, 128-135. doi:10.1016/j.memsci.2014.01.073

Rambabu, G., & Bhat, S. D. (2014). Simultaneous tuning of methanol crossover and ionic conductivity of sPEEK membrane electrolyte by incorporation of PSSA functionalized MWCNTs: A comparative study in DMFCs. Chemical Engineering Journal, 243, 517-525. doi:10.1016/j.cej.2014.01.030

Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., & Kumar, R. (2013). Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 38(8), 1232-1261. doi:10.1016/j.progpolymsci.2013.02.003

Zeng, J., He, B., Lamb, K., De Marco, R., Shen, P. K., & Jiang, S. P. (2013). Phosphoric acid functionalized pre-sintered meso-silica for high temperature proton exchange membrane fuel cells. Chemical Communications, 49(41), 4655. doi:10.1039/c3cc41716f

Paddison, S. J. (2003). Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes. Annual Review of Materials Research, 33(1), 289-319. doi:10.1146/annurev.matsci.33.022702.155102

Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35(17), 9349-9384. doi:10.1016/j.ijhydene.2010.05.017

Kreuer, K.-D. (1996). Proton Conductivity:  Materials and Applications. Chemistry of Materials, 8(3), 610-641. doi:10.1021/cm950192a

Kreuer, K.-D., Paddison, S. J., Spohr, E., & Schuster, M. (2004). Transport in Proton Conductors for Fuel-Cell Applications:  Simulations, Elementary Reactions, and Phenomenology. Chemical Reviews, 104(10), 4637-4678. doi:10.1021/cr020715f

Wang, C., Chalkova, E., Lute, C. D., Fedkin, M. V., Komarneni, S., Chung, T. C. M., & Lvov, S. N. (2010). Proton Conductive Inorganic Materials for Temperatures Up to 120°C and Relative Humidity Down to 5%. Journal of The Electrochemical Society, 157(11), B1634. doi:10.1149/1.3486113

Hara, S. (2002). Proton-conducting properties of hydrated tin dioxide as an electrolyte for fuel cells at intermediate temperature. Solid State Ionics, 154-155, 679-685. doi:10.1016/s0167-2738(02)00517-9

Yang, Q., Kapoor, M. P., & Inagaki, S. (2002). Sulfuric Acid-Functionalized Mesoporous Benzene−Silica with a Molecular-Scale Periodicity in the Walls. Journal of the American Chemical Society, 124(33), 9694-9695. doi:10.1021/ja026799r

Margolese, D., Melero, J. A., Christiansen, S. C., Chmelka, B. F., & Stucky, G. D. (2000). Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups. Chemistry of Materials, 12(8), 2448-2459. doi:10.1021/cm0010304

Jin, Y. G., Qiao, S. Z., Xu, Z. P., Diniz da Costa, J. C., & Lu, G. Q. (2009). Porous Silica Nanospheres Functionalized with Phosphonic Acid as Intermediate-Temperature Proton Conductors. The Journal of Physical Chemistry C, 113(8), 3157-3163. doi:10.1021/jp810112c

Fujita, S., Koiwai, A., Kawasumi, M., & Inagaki, S. (2013). Enhancement of Proton Transport by High Densification of Sulfonic Acid Groups in Highly Ordered Mesoporous Silica. Chemistry of Materials, 25(9), 1584-1591. doi:10.1021/cm303950u

Ponomareva, V. ., & Lavrova, G. . (2001). The investigation of disordered phases in nanocomposite proton electrolytes based on MeHSO4 (Me=Rb, Cs, K). Solid State Ionics, 145(1-4), 197-204. doi:10.1016/s0167-2738(01)00957-2

Vijayakumar, M., Bain, A. D., & Goward, G. R. (2009). Investigations of Proton Conduction in the Monoclinic Phase of RbH2PO4 Using Multinuclear Solid-State NMR. The Journal of Physical Chemistry C, 113(41), 17950-17957. doi:10.1021/jp903408v

Hara, S., Takano, S., & Miyayama, M. (2004). Proton-Conducting Properties and Microstructure of Hydrated Tin Dioxide and Hydrated Zirconia. The Journal of Physical Chemistry B, 108(18), 5634-5639. doi:10.1021/jp0370369

Kozawa, Y., Suzuki, S., Miyayama, M., Okumiya, T., & Traversa, E. (2010). Proton conducting membranes composed of sulfonated poly(etheretherketone) and zirconium phosphate nanosheets for fuel cell applications. Solid State Ionics, 181(5-7), 348-353. doi:10.1016/j.ssi.2009.12.017

Abbaraju, R. R., Dasgupta, N., & Virkar, A. V. (2008). Composite Nafion Membranes Containing Nanosize TiO[sub 2]∕SnO[sub 2] for Proton Exchange Membrane Fuel Cells. Journal of The Electrochemical Society, 155(12), B1307. doi:10.1149/1.2994079

Chalkova, E., Fedkin, M. V., Wesolowski, D. J., & Lvov, S. N. (2005). Effect of TiO[sub 2] Surface Properties on Performance of Nafion-Based Composite Membranes in High Temperature and Low Relative Humidity PEM Fuel Cells. Journal of The Electrochemical Society, 152(9), A1742. doi:10.1149/1.1971216

Sahu, A. K., Selvarani, G., Pitchumani, S., Sridhar, P., & Shukla, A. K. (2007). A Sol-Gel Modified Alternative Nafion-Silica Composite Membrane for Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society, 154(2), B123. doi:10.1149/1.2401031

González-Cardoso, P., Stoica, A.-I., Farràs, P., Pepiol, A., Viñas, C., & Teixidor, F. (2010). Additive Tuning of Redox Potential in Metallacarboranes by Sequential Halogen Substitution. Chemistry - A European Journal, 16(22), 6660-6665. doi:10.1002/chem.200902558

Pepiol, A., Teixidor, F., Sillanpää, R., Lupu, M., & Viñas, C. (2011). Stepwise Sequential Redox Potential Modulation Possible on a Single Platform. Angewandte Chemie International Edition, 50(52), 12491-12495. doi:10.1002/anie.201105668

Tarrés, M., Arderiu, V. S., Zaulet, A., Viñas, C., Fabrizi de Biani, F., & Teixidor, F. (2015). How to get the desired reduction voltage in a single framework! Metallacarborane as an optimal probe for sequential voltage tuning. Dalton Transactions, 44(26), 11690-11695. doi:10.1039/c5dt01464f

Teixidor, F., Viñas, C., Demonceau, A., & Nuñez, R. (2003). Boron clusters: Do they receive the deserved interest? Pure and Applied Chemistry, 75(9), 1305-1313. doi:10.1351/pac200375091305

Olid, D., Núñez, R., Viñas, C., & Teixidor, F. (2013). Methods to produce B–C, B–P, B–N and B–S bonds in boron clusters. Chemical Society Reviews, 42(8), 3318. doi:10.1039/c2cs35441a

Bauduin, P., Prevost, S., Farràs, P., Teixidor, F., Diat, O., & Zemb, T. (2011). A Theta-Shaped Amphiphilic Cobaltabisdicarbollide Anion: Transition From Monolayer Vesicles to Micelles. Angewandte Chemie International Edition, 50(23), 5298-5300. doi:10.1002/anie.201100410

Brusselle, D., Bauduin, P., Girard, L., Zaulet, A., Viñas, C., Teixidor, F., … Diat, O. (2013). Lyotropic Lamellar Phase Formed from Monolayered θ-Shaped Carborane-Cage Amphiphiles. Angewandte Chemie International Edition, 52(46), 12114-12118. doi:10.1002/anie.201307357

Gassin, P.-M., Girard, L., Martin-Gassin, G., Brusselle, D., Jonchère, A., Diat, O., … Bauduin, P. (2015). Surface Activity and Molecular Organization of Metallacarboranes at the Air–Water Interface Revealed by Nonlinear Optics. Langmuir, 31(8), 2297-2303. doi:10.1021/acs.langmuir.5b00125

Ďorďovič, V., Tošner, Z., Uchman, M., Zhigunov, A., Reza, M., Ruokolainen, J., … Matějíček, P. (2016). Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters. Langmuir, 32(26), 6713-6722. doi:10.1021/acs.langmuir.6b01995

Uchman, M., Ďorďovič, V., Tošner, Z., & Matějíček, P. (2015). Classical Amphiphilic Behavior of Nonclassical Amphiphiles: A Comparison of Metallacarborane Self-Assembly with SDS Micellization. Angewandte Chemie International Edition, 54(47), 14113-14117. doi:10.1002/anie.201506545

Núñez, R., Romero, I., Teixidor, F., & Viñas, C. (2016). Icosahedral boron clusters: a perfect tool for the enhancement of polymer features. Chemical Society Reviews, 45(19), 5147-5173. doi:10.1039/c6cs00159a

Núñez, R., Tarrés, M., Ferrer-Ugalde, A., de Biani, F. F., & Teixidor, F. (2016). Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chemical Reviews, 116(23), 14307-14378. doi:10.1021/acs.chemrev.6b00198

Masalles, C., Borrós, S., Viñas, C., & Teixidor, F. (2000). Are Low-Coordinating Anions of Interest as Doping Agents in Organic Conducting Polymers? Advanced Materials, 12(16), 1199-1202. doi:10.1002/1521-4095(200008)12:16<1199::aid-adma1199>3.0.co;2-w

Masalles, C., Borrós, S., Viñas, C., & Teixidor, F. (2002). Surface Layer Formation on Polypyrrole Films. Advanced Materials, 14(6), 449-452. doi:10.1002/1521-4095(20020318)14:6<449::aid-adma449>3.0.co;2-4

Fabre, B., Clark, J. C., & Vicente, M. G. H. (2006). Synthesis and Electrochemistry of Carboranylpyrroles. Toward the Preparation of Electrochemically and Thermally Resistant Conjugated Polymers. Macromolecules, 39(1), 112-119. doi:10.1021/ma051508v

Hao, E., Fabre, B., Fronczek, F. R., & Vicente, M. G. H. (2007). Syntheses and Electropolymerization of Carboranyl-Functionalized Pyrroles and Thiophenes. Chemistry of Materials, 19(25), 6195-6205. doi:10.1021/cm701935n

Masalles, C., Teixidor, F., Borrós, S., & Viñas, C. (2002). Cobaltabisdicarbollide anion [Co(C2B9H11)2]− as doping agent on intelligent membranes for ion capture. Journal of Organometallic Chemistry, 657(1-2), 239-246. doi:10.1016/s0022-328x(02)01432-8

Masalles, C., Llop, J., Viñas, C., & Teixidor, F. (2002). Extraordinary Overoxidation Resistance Increase in Self-Doped Polypyrroles by Using Non-conventional Low Charge-Density Anions. Advanced Materials, 14(11), 826. doi:10.1002/1521-4095(20020605)14:11<826::aid-adma826>3.0.co;2-c

Suárez-Guevara, J., Ruiz, V., & Gómez-Romero, P. (2014). Stable graphene–polyoxometalate nanomaterials for application in hybrid supercapacitors. Phys. Chem. Chem. Phys., 16(38), 20411-20414. doi:10.1039/c4cp03321c

Carrette, L., Friedrich, K. A., & Stimming, U. (2000). Fuel Cells: Principles, Types, Fuels, and Applications. ChemPhysChem, 1(4), 162-193. doi:10.1002/1439-7641(20001215)1:4<162::aid-cphc162>3.0.co;2-z

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Son, H.-J., Jin, S., Patwardhan, S., Wezenberg, S. J., Jeong, N. C., So, M., … Hupp, J. T. (2013). Light-Harvesting and Ultrafast Energy Migration in Porphyrin-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 135(2), 862-869. doi:10.1021/ja310596a

Ren, Y., Chia, G. H., & Gao, Z. (2013). Metal–organic frameworks in fuel cell technologies. Nano Today, 8(6), 577-597. doi:10.1016/j.nantod.2013.11.004

Fernández-Carretero, F. J., Compañ, V., & Riande, E. (2007). Hybrid ion-exchange membranes for fuel cells and separation processes. Journal of Power Sources, 173(1), 68-76. doi:10.1016/j.jpowsour.2007.07.011

J. C. Maxwell , A treatise of Electricity & Magnetism, Dover, NY, 1954

Wagner, K. W. (1914). Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Archiv für Elektrotechnik, 2(9), 371-387. doi:10.1007/bf01657322

Wagner, K. W. (1914). Dielektrische Eigenschaften von verschiedenen Isolierstoffen. Archiv für Elektrotechnik, 3(3-4), 67-106. doi:10.1007/bf01657563

Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638

Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700

Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4

Munar, A., Andrio, A., Iserte, R., & Compañ, V. (2011). Ionic conductivity and diffusion coefficients of lithium salt polymer electrolytes measured with dielectric spectroscopy. Journal of Non-Crystalline Solids, 357(16-17), 3064-3069. doi:10.1016/j.jnoncrysol.2011.04.012

Compañ, V., Smith So/rensen, T., Diaz‐Calleja, R., & Riande, E. (1996). Diffusion coefficients of conductive ions in a copolymer of vinylidene cyanide and vinyl acetate obtained from dielectric measurements using the model of Trukhan. Journal of Applied Physics, 79(1), 403-411. doi:10.1063/1.360844

Wang, Y., Fan, F., Agapov, A. L., Saito, T., Yang, J., Yu, X., … Sokolov, A. P. (2014). Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 55(16), 4067-4076. doi:10.1016/j.polymer.2014.06.085

Sangoro, J. R., Iacob, C., Agapov, A. L., Wang, Y., Berdzinski, S., Rexhausen, H., … Kremer, F. (2014). Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids. Soft Matter, 10(20), 3536-3540. doi:10.1039/c3sm53202j

Weingärtner, H. (2014). The static dielectric permittivity of ionic liquids. Journal of Molecular Liquids, 192, 185-190. doi:10.1016/j.molliq.2013.07.020

Huang, M.-M., Jiang, Y., Sasisanker, P., Driver, G. W., & Weingärtner, H. (2011). Static Relative Dielectric Permittivities of Ionic Liquids at 25 °C. Journal of Chemical & Engineering Data, 56(4), 1494-1499. doi:10.1021/je101184s

Sadakiyo, M., Yamada, T., & Kitagawa, H. (2009). Rational Designs for Highly Proton-Conductive Metal−Organic Frameworks. Journal of the American Chemical Society, 131(29), 9906-9907. doi:10.1021/ja9040016

Barbosa, P., Rosero-Navarro, N. C., Shi, F.-N., & Figueiredo, F. M. L. (2015). Protonic Conductivity of Nanocrystalline Zeolitic Imidazolate Framework 8. Electrochimica Acta, 153, 19-27. doi:10.1016/j.electacta.2014.11.093

Krause, C., Sangoro, J. R., Iacob, C., & Kremer, F. (2010). Charge Transport and Dipolar Relaxations in Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B, 114(1), 382-386. doi:10.1021/jp908519u

Rivera, A., & Rössler, E. A. (2006). Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Physical Review B, 73(21). doi:10.1103/physrevb.73.212201

Sangoro, J. R., Mierzwa, M., Iacob, C., Paluch, M., & Kremer, F. (2012). Brownian dynamics determine universality of charge transport in ionic liquids. RSC Advances, 2(12), 5047. doi:10.1039/c2ra20560b

Namikawa, H. (1974). Multichannel conduction in alkali silicate glasses. Journal of Non-Crystalline Solids, 14(1), 88-100. doi:10.1016/0022-3093(74)90021-0

Namikawa, H. (1975). Characterization of the diffusion process in oxide glasses based on the correlation between electric conduction and dielectric relaxation. Journal of Non-Crystalline Solids, 18(2), 173-195. doi:10.1016/0022-3093(75)90019-8

Macdonald, J. R. (2010). Addendum to «Fundamental questions relating to ion conduction in disordered solids». Journal of Applied Physics, 107(10), 101101. doi:10.1063/1.3359703

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem