Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u
Pasquini, S., Mugnaini, C., Tintori, C., Botta, M., Trejos, A., Arvela, R. K., … Corelli, F. (2008). Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 1. Synthesis and Structure−Activity Relationship of a Class of Human Immunodeficiency Virus type 1 Integrase Inhibitors†. Journal of Medicinal Chemistry, 51(16), 5125-5129. doi:10.1021/jm8003784
Gangjee, A., Zeng, Y., Talreja, T., McGuire, J. J., Kisliuk, R. L., & Queener, S. F. (2007). Design and Synthesis of Classical and Nonclassical 6-Arylthio-2,4-diamino-5-ethylpyrrolo[2,3-d]pyrimidines as Antifolates. Journal of Medicinal Chemistry, 50(13), 3046-3053. doi:10.1021/jm070165j
[+]
Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u
Pasquini, S., Mugnaini, C., Tintori, C., Botta, M., Trejos, A., Arvela, R. K., … Corelli, F. (2008). Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 1. Synthesis and Structure−Activity Relationship of a Class of Human Immunodeficiency Virus type 1 Integrase Inhibitors†. Journal of Medicinal Chemistry, 51(16), 5125-5129. doi:10.1021/jm8003784
Gangjee, A., Zeng, Y., Talreja, T., McGuire, J. J., Kisliuk, R. L., & Queener, S. F. (2007). Design and Synthesis of Classical and Nonclassical 6-Arylthio-2,4-diamino-5-ethylpyrrolo[2,3-d]pyrimidines as Antifolates. Journal of Medicinal Chemistry, 50(13), 3046-3053. doi:10.1021/jm070165j
Clader, J. W., Billard, W., Binch, H., Chen, L.-Y., Crosby, G., Duffy, R. A., … Greenlee, W. J. (2004). Muscarinic M2 antagonists: anthranilamide derivatives with exceptional selectivity and in vivo activity. Bioorganic & Medicinal Chemistry, 12(2), 319-326. doi:10.1016/j.bmc.2003.11.005
Liu, G., Huth, J. R., Olejniczak, E. T., Mendoza, R., DeVries, P., Leitza, S., … von Geldern, T. W. (2001). Novelp-Arylthio Cinnamides as Antagonists of Leukocyte Function-Associated Antigen-1/Intracellular Adhesion Molecule-1 Interaction. 2. Mechanism of Inhibition and Structure-Based Improvement of Pharmaceutical Properties. Journal of Medicinal Chemistry, 44(8), 1202-1210. doi:10.1021/jm000503f
Nielsen, S. F., Nielsen, E. Ø., Olsen, G. M., Liljefors, T., & Peters, D. (2000). Novel Potent Ligands for the Central Nicotinic Acetylcholine Receptor: Synthesis, Receptor Binding, and 3D-QSAR Analysis. Journal of Medicinal Chemistry, 43(11), 2217-2226. doi:10.1021/jm990973d
Sciabola, S., Carosati, E., Baroni, M., & Mannhold, R. (2005). Comparison of Ligand-Based and Structure-Based 3D-QSAR Approaches: A Case Study on (Aryl-)Bridged 2-Aminobenzonitriles Inhibiting HIV-1 Reverse Transcriptase. Journal of Medicinal Chemistry, 48(11), 3756-3767. doi:10.1021/jm049162m
Llauger, L., He, H., Kim, J., Aguirre, J., Rosen, N., Peters, U., … Chiosis, G. (2005). Evaluation of 8-Arylsulfanyl, 8-Arylsulfoxyl, and 8-Arylsulfonyl Adenine Derivatives as Inhibitors of the Heat Shock Protein 90. Journal of Medicinal Chemistry, 48(8), 2892-2905. doi:10.1021/jm049012b
Otzen, T., Wempe, E. G., Kunz, B., Bartels, R., Lehwark-Yvetot, G., Hänsel, W., … Seydel, J. K. (2004). Folate-Synthesizing Enzyme System as Target for Development of Inhibitors and Inhibitor Combinations againstCandidaalbicansSynthesis and Biological Activity of New 2,4-Diaminopyrimidines and 4‘-Substituted 4-Aminodiphenyl Sulfones. Journal of Medicinal Chemistry, 47(1), 240-253. doi:10.1021/jm030931w
Wang, Y., Chackalamannil, S., Hu, Z., Clader, J. W., Greenlee, W., Billard, W., … Lachowicz, J. E. (2000). Design and synthesis of piperidinyl piperidine analogues as potent and selective M2 muscarinic receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 10(20), 2247-2250. doi:10.1016/s0960-894x(00)00457-1
Sun, Z.-Y., Botros, E., Su, A.-D., Kim, Y., Wang, E., Baturay, N. Z., & Kwon, C.-H. (2000). Sulfoxide-Containing Aromatic Nitrogen Mustards as Hypoxia-Directed Bioreductive Cytotoxins. Journal of Medicinal Chemistry, 43(22), 4160-4168. doi:10.1021/jm9904957
Yin, J., & Pidgeon, C. (1997). A simple and efficient method for preparation of unsymmetrical sulfides. Tetrahedron Letters, 38(34), 5953-5954. doi:10.1016/s0040-4039(97)01352-x
Herriott, A. W., & Picker, D. (1975). Phase transfer catalysis. Evaluation of catalysis. Journal of the American Chemical Society, 97(9), 2345-2349. doi:10.1021/ja00842a006
Goux, C., Lhoste, P., & Sinou, D. (1992). Synthesis of allyl aryl sulphides by palladium(0)-mediated alkylation of thiols. Tetrahedron Letters, 33(52), 8099-8102. doi:10.1016/s0040-4039(00)74729-0
Li, C.-J., & Harpp, D. N. (1992). A convenient preparation of arylthiostannanes. Tetrahedron Letters, 33(48), 7293-7294. doi:10.1016/s0040-4039(00)60169-7
Page, P. C. B., Klair, S. S., Brown, M. P., Harding, M. M., Smith, C. S., Maginn, S. J., & Mulley, S. (1988). Carbon—sulphur bond formation catalysed by bis(diphenylphosphino)-methane complexes of platinum (II). Tetrahedron Letters, 29(35), 4477-4480. doi:10.1016/s0040-4039(00)80527-4
Gingras, M., Chan, T. H., & Harpp, D. N. (1990). New methodologies: fluorodemetalation of organogermanium, -tin, and -lead compounds. Applications with organometallic sulfides to produce highly active anions and spectroscopic evidence for pentavalent intermediates in substitution at tin. The Journal of Organic Chemistry, 55(7), 2078-2090. doi:10.1021/jo00294a021
Harpp, D. N., & Gingras, M. (1988). Organosulfur chemistry. Part 55. Fluorodestannylation. A powerful technique to liberate anions of oxygen, sulfur, selenium, and carbon. Journal of the American Chemical Society, 110(23), 7737-7745. doi:10.1021/ja00231a025
Kosugi, M., Ogata, T., Terada, M., Sano, H., & Migita, T. (1985). Palladium-catalyzed Reaction of Stannyl Sulfide with Aryl Bromide. Preparation of Aryl Sulfide. Bulletin of the Chemical Society of Japan, 58(12), 3657-3658. doi:10.1246/bcsj.58.3657
Li, T.-S., & Li, A.-X. (1998). Montmorillonite clay catalysis. Part 10.1 K-10 and KSF-catalysed acylation of alcohols, phenols, thiols and amines: scope and limitation. Journal of the Chemical Society, Perkin Transactions 1, (12), 1913-1918. doi:10.1039/a802051e
Richter, L. S., Marsters, J. C., & Gadek, T. R. (1994). Two new procedures for the introduction of benzyl-type protecting groups for thiols. Tetrahedron Letters, 35(11), 1631-1634. doi:10.1016/0040-4039(94)88305-x
Shah, S. T. A., Khan, K. M., Martinez Heinrich, A., & Voelter, W. (2002). An alternative approach towards the syntheses of thioethers and thioesters using CsF–Celite in acetonitrile. Tetrahedron Letters, 43(46), 8281-8283. doi:10.1016/s0040-4039(02)02028-2
Polshettiwar, V., Nivsarkar, M., Acharya, J., & Kaushik, M. . (2003). A new reagent for the efficient synthesis of disulfides from alkyl halides. Tetrahedron Letters, 44(5), 887-889. doi:10.1016/s0040-4039(02)02776-4
Ranu, B. C., & Jana, R. (2005). Ionic Liquid as Catalyst and Reaction Medium: A Simple, Convenient and Green Procedure for the Synthesis of Thioethers, Thioesters and Dithianes using an Inexpensive Ionic Liquid, [pmIm]Br. Advanced Synthesis & Catalysis, 347(14), 1811-1818. doi:10.1002/adsc.200505122
Okauchi, T., Kuramoto, K., & Kitamura, M. (2010). Facile Preparation of Aryl Sulfides Using Palladium Catalysis under Mild Conditions. Synlett, 2010(19), 2891-2894. doi:10.1055/s-0030-1259012
Kumar, P., Pandey, R. K., & Hegde, V. R. (1999). Anti-Markovnikov Addition of Thiols Across Double Bonds Catalyzed by H-Rho-Zeolite. Synlett, 1999(12), 1921-1922. doi:10.1055/s-1999-2976
Kanagasabapathy, S., Sudalai, A., & Benicewicz, B. C. (2001). Montmorillonite K 10-catalyzed regioselective addition of thiols and thiobenzoic acids onto olefins: an efficient synthesis of dithiocarboxylic esters. Tetrahedron Letters, 42(23), 3791-3794. doi:10.1016/s0040-4039(01)00570-6
Dougherty, G., & Hammond, P. D. (1935). The Reaction of Sulfur with Benzene in the Presence of Aluminum Chloride. Journal of the American Chemical Society, 57(1), 117-118. doi:10.1021/ja01304a031
Glass, H. B., & Reid, E. E. (1929). THE DIRECT INTRODUCTION OF SULFUR INTO AROMATIC HYDROCARBONS1. Journal of the American Chemical Society, 51(11), 3428-3430. doi:10.1021/ja01386a036
Kharasch, N., Potempa, S. J., & Wehrmeister, H. L. (1946). The Sulfenic Acids and their Derivatives. Chemical Reviews, 39(2), 269-332. doi:10.1021/cr60123a004
Banerjee, S., Das, J., Alvarez, R. P., & Santra, S. (2010). Silicananoparticles as a reusable catalyst: a straightforward route for the synthesis of thioethers, thioesters, vinyl thioethers and thio-Michael adducts under neutral reaction conditions. New J. Chem., 34(2), 302-306. doi:10.1039/b9nj00399a
Li, Z., Li, H., Guo, X., Cao, L., Yu, R., Li, H., & Pan, S. (2008). C−H Bond Oxidation Initiated Pummerer- and Knoevenagel-Type Reactions of Benzyl Sulfide and 1,3-Dicarbonyl Compounds. Organic Letters, 10(5), 803-805. doi:10.1021/ol702934k
Martin, M. T., Thomas, A. M., & York, D. G. (2002). Direct synthesis of thioethers from sulfonyl chlorides and activated alcohols. Tetrahedron Letters, 43(12), 2145-2147. doi:10.1016/s0040-4039(02)00218-6
Fernández-Rodríguez, M. A., & Hartwig, J. F. (2010). One-Pot Synthesis of Unsymmetrical Diaryl Thioethers by Palladium-Catalyzed Coupling of Two Aryl Bromides and a Thiol Surrogate. Chemistry - A European Journal, 16(8), 2355-2359. doi:10.1002/chem.200902313
O. De Lucchi U. Miotti G. Modena Org. React.1991 40 157–184;
Padwa, A., Gunn, Jr., D. E., & Osterhout, M. H. (1997). Application of the Pummerer Reaction Toward the Synthesis of Complex Carbocycles and Heterocycles. Synthesis, 1997(12), 1353-1377. doi:10.1055/s-1997-1384
Padwa, A., Bur, S. K., Danca, D. M., Ginn, J. D., & Lynch, S. M. (2002). Linked Pummerer-Mannich Ion Cyclizations for Heterocyclic Chemistry. Synlett, 2002(06), 0851-0862. doi:10.1055/s-2002-31891
Olah, G. A., Wang, Q., Trivedi, N. J., & Surya Prakash, G. K. (1992). Boron Trifluoride Monohydrate Catalyzed One-Flask Preparation of Sulfides from Carbonyl Compounds with Thiols and Triethylsilane. Synthesis, 1992(05), 465-466. doi:10.1055/s-1992-26138
Kikugawa, Y. (1981). A NEW SYNTHESIS OF SULFIDES FROM THIOLS AND ALDEHYDES OR KETONES WITH PYRIDINE-BORANE IN TRIFLUOROACETIC ACID. Chemistry Letters, 10(8), 1157-1158. doi:10.1246/cl.1981.1157
Glass, R. S. (1976). Reductive Sulfidation. Conversion of Aldehydes into Sulfides. Synthetic Communications, 6(1), 47-51. doi:10.1080/00397917608062132
Olah, G. A., Wang, Q., Li, X., & Surya Prakash, G. K. (1993). Boron Trifluoride Monohydrate Catalyzed One-Flask 2,2,2-Trifluoro-1-(ethylthio)ethylation of Aromatics with Trifluoroacetaldehyde Hydrate and Ethanethiol1. Synlett, 1993(01), 32-34. doi:10.1055/s-1993-22336
For recent reviews see:
Guillena, G., Ramón, D. J., & Yus, M. (2007). C-C-Kupplungen mit Alkoholen als Elektrophilen: der Wasserstoff-Autotransfer. Angewandte Chemie, 119(14), 2410-2416. doi:10.1002/ange.200603794
Guillena, G., Ramón, D. J., & Yus, M. (2007). Alcohols as Electrophiles in CC Bond-Forming Reactions: The Hydrogen Autotransfer Process. Angewandte Chemie International Edition, 46(14), 2358-2364. doi:10.1002/anie.200603794
Hamid, M. H. S. A., Slatford, P. A., & Williams, J. M. J. (2007). Borrowing Hydrogen in the Activation of Alcohols. Advanced Synthesis & Catalysis, 349(10), 1555-1575. doi:10.1002/adsc.200600638
SAKINTUNA, B., LAMARIDARKRIM, F., & HIRSCHER, M. (2007). Metal hydride materials for solid hydrogen storage: A review☆. International Journal of Hydrogen Energy, 32(9), 1121-1140. doi:10.1016/j.ijhydene.2006.11.022
Corma, A., Ródenas, T., & Sabater, M. (2010). A Bifunctional Pd/MgO Solid Catalyst for the One-Pot Selective N-Monoalkylation of Amines with Alcohols. Chemistry - A European Journal, 16(1), 254-260. doi:10.1002/chem.200901501
Corma, A., Ródenas, T., & Sabater, M. J. (2011). Monoalkylations with alcohols by a cascade reaction on bifunctional solid catalysts: Reaction kinetics and mechanism. Journal of Catalysis, 279(2), 319-327. doi:10.1016/j.jcat.2011.01.029
Boronat, M., Corma, A., Illas, F., Radilla, J., Ródenas, T., & Sabater, M. J. (2011). Mechanism of selective alcohol oxidation to aldehydes on gold catalysts: Influence of surface roughness on reactivity. Journal of Catalysis, 278(1), 50-58. doi:10.1016/j.jcat.2010.11.013
Haruta, M., Kobayashi, T., Sano, H., & Yamada, N. (1987). Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chemistry Letters, 16(2), 405-408. doi:10.1246/cl.1987.405
Campbell, C. T. (2004). PHYSICS: The Active Site in Nanoparticle Gold Catalysis. Science, 306(5694), 234-235. doi:10.1126/science.1104246
Haruta, M. (2003). When Gold Is Not Noble: Catalysis by Nanoparticles. The Chemical Record, 3(2), 75-87. doi:10.1002/tcr.10053
Valden, M. (1998). Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science, 281(5383), 1647-1650. doi:10.1126/science.281.5383.1647
Kubo, R. (1962). Electronic Properties of Metallic Fine Particles. I. Journal of the Physical Society of Japan, 17(6), 975-986. doi:10.1143/jpsj.17.975
Corma, A., Ródenas, T., & Sabater, M. J. (2012). Aerobic oxidation of thiols to disulfides by heterogeneous goldcatalysts. Chem. Sci., 3(2), 398-404. doi:10.1039/c1sc00466b
March’s Advanced Organic Chemistry 2007 Michael B.Smith J. March Ed. 6thedition Wiley.
Harris, J. (1960). Communications: Hydrogen Sulfide Adducts of Halogenated Aldehydes and Ketones. The Journal of Organic Chemistry, 25(12), 2259-2259. doi:10.1021/jo01082a629
Field, L., Sweetman, B. J., & Bellas, M. (1969). Biologically oriented organic sulfur chemistry. II. Formation of hemimercaptals or hemimercaptoles (.alpha.-hydroxy sulfides) as a means of latentiating thiols. Journal of Medicinal Chemistry, 12(4), 624-628. doi:10.1021/jm00304a014
Woodward, R. B., & Brehm, W. J. (1948). The Structure of Strychnine. Formulation of the Neo Bases. Journal of the American Chemical Society, 70(6), 2107-2115. doi:10.1021/ja01186a034
Madabhushi, S., Mallu, K. K. R., Chinthala, N., Beeram, C. R., & Vangipuram, V. S. (2012). Efficient and chemoselective acetalization and thioacetalization of carbonyls and subsequent deprotection using InF3 as a reusable catalyst. Tetrahedron Letters, 53(6), 697-701. doi:10.1016/j.tetlet.2011.11.135
Barnett, R. E., & Jencks, W. P. (1969). Diffusion-controlled and concerted base catalysis in the decomposition of hemithioacetals. Journal of the American Chemical Society, 91(24), 6758-6765. doi:10.1021/ja01052a038
Mori, K., Hara, T., Mizugaki, T., Ebitani, K., & Kaneda, K. (2004). Hydroxyapatite-Supported Palladium Nanoclusters: A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen. Journal of the American Chemical Society, 126(34), 10657-10666. doi:10.1021/ja0488683
Abad, A., Almela, C., Corma, A., & García, H. (2006). Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts. Tetrahedron, 62(28), 6666-6672. doi:10.1016/j.tet.2006.01.118
Sugiyama, S., Minami, T., Hayashi, H., Tanaka, M., Shigemoto, N., & Moffat, J. B. (1996). Enhancement of the selectivity to carbon monoxide with feedstream doping by tetrachloromethane in the oxidation of methane on stoichiometric calcium hydroxyapatite. Journal of the Chemical Society, Faraday Transactions, 92(2), 293. doi:10.1039/ft9969200293
CLIMENT, M., CORMA, A., IBORRA, S., & MIFSUD, M. (2007). MgO nanoparticle-based multifunctional catalysts in the cascade reaction allows the green synthesis of anti-inflammatory agents. Journal of Catalysis, 247(2), 223-230. doi:10.1016/j.jcat.2007.02.003
CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027
Corma, A., Navas, J., & Sabater, M. J. (2012). Coupling of Two Multistep Catalytic Cycles for the One-Pot Synthesis of Propargylamines from Alcohols and Primary Amines on a Nanoparticulated Gold Catalyst. Chemistry - A European Journal, 18(44), 14150-14156. doi:10.1002/chem.201201837
[-]