- -

One-Pot Palladium-Catalyzed Borrowing Hydrogen Synthesis of Thioethers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One-Pot Palladium-Catalyzed Borrowing Hydrogen Synthesis of Thioethers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Navas Escrig, Javier es_ES
dc.contributor.author Ródenas Torralba, Tania es_ES
dc.contributor.author Sabater Picot, Mª José es_ES
dc.date.accessioned 2020-04-22T08:00:54Z
dc.date.available 2020-04-22T08:00:54Z
dc.date.issued 2013 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141289
dc.description This is the peer reviewed version of the following article: One-Pot Palladium-Catalyzed Borrowing Hydrogen Synthesis of Thioethers], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] Palladium on magnesium oxide is able to allow a one-pot reaction to synthesize thioethers from thiols and aldehydes formed in situ from the respective alcohol by means of a borrowing hydrogen method. The reaction is initiated by dehydrogenation of the alcohol to give a palladium hydride intermediate and an aldehyde. The latter reacts with a thiol involving most probably the intermediacy of a thionium ion RCHS+R, which can be reduced in situ by the metal hydride to afford thioethers. es_ES
dc.description.sponsorship Financial support by Consolider-Ingenio 2010 (project MULTICAT), Spanish MICINN (project MAT2011-28009), Generalitat Valenciana (project PROMETEO/2008/130), and Programa Severo Ochoa is acknowledged. T.R. and J.N. express their gratitude to Consejo Superior de Investigaciones Cientificas for I3-P and JAE fellowships. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Hydrogen transfer es_ES
dc.subject Palladium es_ES
dc.subject Synthetic methods es_ES
dc.subject Thioethers es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title One-Pot Palladium-Catalyzed Borrowing Hydrogen Synthesis of Thioethers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201302226 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F130/ES/Química sostenible: Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-28009/ES/CATALIZADORES MONO- Y MULTIFUNCIONALES BASADOS EN NANOPARTICULAS METALICAS DIRIGIDOS A TRANSFORMACIONES SECUENCIALES O REACCIONES EN CASCADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSIC//I3-P fellowships/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Corma Canós, A.; Navas Escrig, J.; Ródenas Torralba, T.; Sabater Picot, MJ. (2013). One-Pot Palladium-Catalyzed Borrowing Hydrogen Synthesis of Thioethers. Chemistry - A European Journal. 19(51):17464-17471. https://doi.org/10.1002/chem.201302226 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201302226 es_ES
dc.description.upvformatpinicio 17464 es_ES
dc.description.upvformatpfin 17471 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 51 es_ES
dc.relation.pasarela S\254809 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u es_ES
dc.description.references Pasquini, S., Mugnaini, C., Tintori, C., Botta, M., Trejos, A., Arvela, R. K., … Corelli, F. (2008). Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 1. Synthesis and Structure−Activity Relationship of a Class of Human Immunodeficiency Virus type 1 Integrase Inhibitors†. Journal of Medicinal Chemistry, 51(16), 5125-5129. doi:10.1021/jm8003784 es_ES
dc.description.references Gangjee, A., Zeng, Y., Talreja, T., McGuire, J. J., Kisliuk, R. L., & Queener, S. F. (2007). Design and Synthesis of Classical and Nonclassical 6-Arylthio-2,4-diamino-5-ethylpyrrolo[2,3-d]pyrimidines as Antifolates. Journal of Medicinal Chemistry, 50(13), 3046-3053. doi:10.1021/jm070165j es_ES
dc.description.references Clader, J. W., Billard, W., Binch, H., Chen, L.-Y., Crosby, G., Duffy, R. A., … Greenlee, W. J. (2004). Muscarinic M2 antagonists: anthranilamide derivatives with exceptional selectivity and in vivo activity. Bioorganic & Medicinal Chemistry, 12(2), 319-326. doi:10.1016/j.bmc.2003.11.005 es_ES
dc.description.references Liu, G., Huth, J. R., Olejniczak, E. T., Mendoza, R., DeVries, P., Leitza, S., … von Geldern, T. W. (2001). Novelp-Arylthio Cinnamides as Antagonists of Leukocyte Function-Associated Antigen-1/Intracellular Adhesion Molecule-1 Interaction. 2. Mechanism of Inhibition and Structure-Based Improvement of Pharmaceutical Properties. Journal of Medicinal Chemistry, 44(8), 1202-1210. doi:10.1021/jm000503f es_ES
dc.description.references Nielsen, S. F., Nielsen, E. Ø., Olsen, G. M., Liljefors, T., & Peters, D. (2000). Novel Potent Ligands for the Central Nicotinic Acetylcholine Receptor:  Synthesis, Receptor Binding, and 3D-QSAR Analysis. Journal of Medicinal Chemistry, 43(11), 2217-2226. doi:10.1021/jm990973d es_ES
dc.description.references Sciabola, S., Carosati, E., Baroni, M., & Mannhold, R. (2005). Comparison of Ligand-Based and Structure-Based 3D-QSAR Approaches:  A Case Study on (Aryl-)Bridged 2-Aminobenzonitriles Inhibiting HIV-1 Reverse Transcriptase. Journal of Medicinal Chemistry, 48(11), 3756-3767. doi:10.1021/jm049162m es_ES
dc.description.references Llauger, L., He, H., Kim, J., Aguirre, J., Rosen, N., Peters, U., … Chiosis, G. (2005). Evaluation of 8-Arylsulfanyl, 8-Arylsulfoxyl, and 8-Arylsulfonyl Adenine Derivatives as Inhibitors of the Heat Shock Protein 90. Journal of Medicinal Chemistry, 48(8), 2892-2905. doi:10.1021/jm049012b es_ES
dc.description.references Otzen, T., Wempe, E. G., Kunz, B., Bartels, R., Lehwark-Yvetot, G., Hänsel, W., … Seydel, J. K. (2004). Folate-Synthesizing Enzyme System as Target for Development of Inhibitors and Inhibitor Combinations againstCandidaalbicansSynthesis and Biological Activity of New 2,4-Diaminopyrimidines and 4‘-Substituted 4-Aminodiphenyl Sulfones. Journal of Medicinal Chemistry, 47(1), 240-253. doi:10.1021/jm030931w es_ES
dc.description.references Wang, Y., Chackalamannil, S., Hu, Z., Clader, J. W., Greenlee, W., Billard, W., … Lachowicz, J. E. (2000). Design and synthesis of piperidinyl piperidine analogues as potent and selective M2 muscarinic receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 10(20), 2247-2250. doi:10.1016/s0960-894x(00)00457-1 es_ES
dc.description.references Sun, Z.-Y., Botros, E., Su, A.-D., Kim, Y., Wang, E., Baturay, N. Z., & Kwon, C.-H. (2000). Sulfoxide-Containing Aromatic Nitrogen Mustards as Hypoxia-Directed Bioreductive Cytotoxins. Journal of Medicinal Chemistry, 43(22), 4160-4168. doi:10.1021/jm9904957 es_ES
dc.description.references Yin, J., & Pidgeon, C. (1997). A simple and efficient method for preparation of unsymmetrical sulfides. Tetrahedron Letters, 38(34), 5953-5954. doi:10.1016/s0040-4039(97)01352-x es_ES
dc.description.references Herriott, A. W., & Picker, D. (1975). Phase transfer catalysis. Evaluation of catalysis. Journal of the American Chemical Society, 97(9), 2345-2349. doi:10.1021/ja00842a006 es_ES
dc.description.references Goux, C., Lhoste, P., & Sinou, D. (1992). Synthesis of allyl aryl sulphides by palladium(0)-mediated alkylation of thiols. Tetrahedron Letters, 33(52), 8099-8102. doi:10.1016/s0040-4039(00)74729-0 es_ES
dc.description.references Li, C.-J., & Harpp, D. N. (1992). A convenient preparation of arylthiostannanes. Tetrahedron Letters, 33(48), 7293-7294. doi:10.1016/s0040-4039(00)60169-7 es_ES
dc.description.references Page, P. C. B., Klair, S. S., Brown, M. P., Harding, M. M., Smith, C. S., Maginn, S. J., & Mulley, S. (1988). Carbon—sulphur bond formation catalysed by bis(diphenylphosphino)-methane complexes of platinum (II). Tetrahedron Letters, 29(35), 4477-4480. doi:10.1016/s0040-4039(00)80527-4 es_ES
dc.description.references Gingras, M., Chan, T. H., & Harpp, D. N. (1990). New methodologies: fluorodemetalation of organogermanium, -tin, and -lead compounds. Applications with organometallic sulfides to produce highly active anions and spectroscopic evidence for pentavalent intermediates in substitution at tin. The Journal of Organic Chemistry, 55(7), 2078-2090. doi:10.1021/jo00294a021 es_ES
dc.description.references Harpp, D. N., & Gingras, M. (1988). Organosulfur chemistry. Part 55. Fluorodestannylation. A powerful technique to liberate anions of oxygen, sulfur, selenium, and carbon. Journal of the American Chemical Society, 110(23), 7737-7745. doi:10.1021/ja00231a025 es_ES
dc.description.references Kosugi, M., Ogata, T., Terada, M., Sano, H., & Migita, T. (1985). Palladium-catalyzed Reaction of Stannyl Sulfide with Aryl Bromide. Preparation of Aryl Sulfide. Bulletin of the Chemical Society of Japan, 58(12), 3657-3658. doi:10.1246/bcsj.58.3657 es_ES
dc.description.references Li, T.-S., & Li, A.-X. (1998). Montmorillonite clay catalysis. Part 10.1 K-10 and KSF-catalysed acylation of alcohols, phenols, thiols and amines: scope and limitation. Journal of the Chemical Society, Perkin Transactions 1, (12), 1913-1918. doi:10.1039/a802051e es_ES
dc.description.references Richter, L. S., Marsters, J. C., & Gadek, T. R. (1994). Two new procedures for the introduction of benzyl-type protecting groups for thiols. Tetrahedron Letters, 35(11), 1631-1634. doi:10.1016/0040-4039(94)88305-x es_ES
dc.description.references Shah, S. T. A., Khan, K. M., Martinez Heinrich, A., & Voelter, W. (2002). An alternative approach towards the syntheses of thioethers and thioesters using CsF–Celite in acetonitrile. Tetrahedron Letters, 43(46), 8281-8283. doi:10.1016/s0040-4039(02)02028-2 es_ES
dc.description.references Polshettiwar, V., Nivsarkar, M., Acharya, J., & Kaushik, M. . (2003). A new reagent for the efficient synthesis of disulfides from alkyl halides. Tetrahedron Letters, 44(5), 887-889. doi:10.1016/s0040-4039(02)02776-4 es_ES
dc.description.references Ranu, B. C., & Jana, R. (2005). Ionic Liquid as Catalyst and Reaction Medium: A Simple, Convenient and Green Procedure for the Synthesis of Thioethers, Thioesters and Dithianes using an Inexpensive Ionic Liquid, [pmIm]Br. Advanced Synthesis & Catalysis, 347(14), 1811-1818. doi:10.1002/adsc.200505122 es_ES
dc.description.references Okauchi, T., Kuramoto, K., & Kitamura, M. (2010). Facile Preparation of Aryl Sulfides Using Palladium Catalysis under Mild Conditions. Synlett, 2010(19), 2891-2894. doi:10.1055/s-0030-1259012 es_ES
dc.description.references Kumar, P., Pandey, R. K., & Hegde, V. R. (1999). Anti-Markovnikov Addition of Thiols Across Double Bonds Catalyzed by H-Rho-Zeolite. Synlett, 1999(12), 1921-1922. doi:10.1055/s-1999-2976 es_ES
dc.description.references Kanagasabapathy, S., Sudalai, A., & Benicewicz, B. C. (2001). Montmorillonite K 10-catalyzed regioselective addition of thiols and thiobenzoic acids onto olefins: an efficient synthesis of dithiocarboxylic esters. Tetrahedron Letters, 42(23), 3791-3794. doi:10.1016/s0040-4039(01)00570-6 es_ES
dc.description.references Dougherty, G., & Hammond, P. D. (1935). The Reaction of Sulfur with Benzene in the Presence of Aluminum Chloride. Journal of the American Chemical Society, 57(1), 117-118. doi:10.1021/ja01304a031 es_ES
dc.description.references Glass, H. B., & Reid, E. E. (1929). THE DIRECT INTRODUCTION OF SULFUR INTO AROMATIC HYDROCARBONS1. Journal of the American Chemical Society, 51(11), 3428-3430. doi:10.1021/ja01386a036 es_ES
dc.description.references Kharasch, N., Potempa, S. J., & Wehrmeister, H. L. (1946). The Sulfenic Acids and their Derivatives. Chemical Reviews, 39(2), 269-332. doi:10.1021/cr60123a004 es_ES
dc.description.references Banerjee, S., Das, J., Alvarez, R. P., & Santra, S. (2010). Silicananoparticles as a reusable catalyst: a straightforward route for the synthesis of thioethers, thioesters, vinyl thioethers and thio-Michael adducts under neutral reaction conditions. New J. Chem., 34(2), 302-306. doi:10.1039/b9nj00399a es_ES
dc.description.references Li, Z., Li, H., Guo, X., Cao, L., Yu, R., Li, H., & Pan, S. (2008). C−H Bond Oxidation Initiated Pummerer- and Knoevenagel-Type Reactions of Benzyl Sulfide and 1,3-Dicarbonyl Compounds. Organic Letters, 10(5), 803-805. doi:10.1021/ol702934k es_ES
dc.description.references Martin, M. T., Thomas, A. M., & York, D. G. (2002). Direct synthesis of thioethers from sulfonyl chlorides and activated alcohols. Tetrahedron Letters, 43(12), 2145-2147. doi:10.1016/s0040-4039(02)00218-6 es_ES
dc.description.references Fernández-Rodríguez, M. A., & Hartwig, J. F. (2010). One-Pot Synthesis of Unsymmetrical Diaryl Thioethers by Palladium-Catalyzed Coupling of Two Aryl Bromides and a Thiol Surrogate. Chemistry - A European Journal, 16(8), 2355-2359. doi:10.1002/chem.200902313 es_ES
dc.description.references O. De Lucchi U. Miotti G. Modena Org. React.­1991 40 157–184; es_ES
dc.description.references Padwa, A., Gunn, Jr., D. E., & Osterhout, M. H. (1997). Application of the Pummerer Reaction Toward the Synthesis of Complex Carbocycles and Heterocycles. Synthesis, 1997(12), 1353-1377. doi:10.1055/s-1997-1384 es_ES
dc.description.references Padwa, A., Bur, S. K., Danca, D. M., Ginn, J. D., & Lynch, S. M. (2002). Linked Pummerer-Mannich Ion Cyclizations for Heterocyclic Chemistry. Synlett, 2002(06), 0851-0862. doi:10.1055/s-2002-31891 es_ES
dc.description.references Olah, G. A., Wang, Q., Trivedi, N. J., & Surya Prakash, G. K. (1992). Boron Trifluoride Monohydrate Catalyzed One-Flask Preparation of Sulfides from Carbonyl Compounds with Thiols and Triethylsilane. Synthesis, 1992(05), 465-466. doi:10.1055/s-1992-26138 es_ES
dc.description.references Kikugawa, Y. (1981). A NEW SYNTHESIS OF SULFIDES FROM THIOLS AND ALDEHYDES OR KETONES WITH PYRIDINE-BORANE IN TRIFLUOROACETIC ACID. Chemistry Letters, 10(8), 1157-1158. doi:10.1246/cl.1981.1157 es_ES
dc.description.references Glass, R. S. (1976). Reductive Sulfidation. Conversion of Aldehydes into Sulfides. Synthetic Communications, 6(1), 47-51. doi:10.1080/00397917608062132 es_ES
dc.description.references Olah, G. A., Wang, Q., Li, X., & Surya Prakash, G. K. (1993). Boron Trifluoride Monohydrate Catalyzed One-Flask 2,2,2-Trifluoro-1-(ethylthio)ethylation of Aromatics with Trifluoroacetaldehyde Hydrate and Ethanethiol1. Synlett, 1993(01), 32-34. doi:10.1055/s-1993-22336 es_ES
dc.description.references For recent reviews see: es_ES
dc.description.references Guillena, G., Ramón, D. J., & Yus, M. (2007). C-C-Kupplungen mit Alkoholen als Elektrophilen: der Wasserstoff-Autotransfer. Angewandte Chemie, 119(14), 2410-2416. doi:10.1002/ange.200603794 es_ES
dc.description.references Guillena, G., Ramón, D. J., & Yus, M. (2007). Alcohols as Electrophiles in CC Bond-Forming Reactions: The Hydrogen Autotransfer Process. Angewandte Chemie International Edition, 46(14), 2358-2364. doi:10.1002/anie.200603794 es_ES
dc.description.references Hamid, M. H. S. A., Slatford, P. A., & Williams, J. M. J. (2007). Borrowing Hydrogen in the Activation of Alcohols. Advanced Synthesis & Catalysis, 349(10), 1555-1575. doi:10.1002/adsc.200600638 es_ES
dc.description.references SAKINTUNA, B., LAMARIDARKRIM, F., & HIRSCHER, M. (2007). Metal hydride materials for solid hydrogen storage: A review☆. International Journal of Hydrogen Energy, 32(9), 1121-1140. doi:10.1016/j.ijhydene.2006.11.022 es_ES
dc.description.references Corma, A., Ródenas, T., & Sabater, M. (2010). A Bifunctional Pd/MgO Solid Catalyst for the One-Pot Selective N-Monoalkylation of Amines with Alcohols. Chemistry - A European Journal, 16(1), 254-260. doi:10.1002/chem.200901501 es_ES
dc.description.references Corma, A., Ródenas, T., & Sabater, M. J. (2011). Monoalkylations with alcohols by a cascade reaction on bifunctional solid catalysts: Reaction kinetics and mechanism. Journal of Catalysis, 279(2), 319-327. doi:10.1016/j.jcat.2011.01.029 es_ES
dc.description.references Boronat, M., Corma, A., Illas, F., Radilla, J., Ródenas, T., & Sabater, M. J. (2011). Mechanism of selective alcohol oxidation to aldehydes on gold catalysts: Influence of surface roughness on reactivity. Journal of Catalysis, 278(1), 50-58. doi:10.1016/j.jcat.2010.11.013 es_ES
dc.description.references Haruta, M., Kobayashi, T., Sano, H., & Yamada, N. (1987). Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chemistry Letters, 16(2), 405-408. doi:10.1246/cl.1987.405 es_ES
dc.description.references Campbell, C. T. (2004). PHYSICS: The Active Site in Nanoparticle Gold Catalysis. Science, 306(5694), 234-235. doi:10.1126/science.1104246 es_ES
dc.description.references Haruta, M. (2003). When Gold Is Not Noble: Catalysis by Nanoparticles. The Chemical Record, 3(2), 75-87. doi:10.1002/tcr.10053 es_ES
dc.description.references Valden, M. (1998). Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science, 281(5383), 1647-1650. doi:10.1126/science.281.5383.1647 es_ES
dc.description.references Kubo, R. (1962). Electronic Properties of Metallic Fine Particles. I. Journal of the Physical Society of Japan, 17(6), 975-986. doi:10.1143/jpsj.17.975 es_ES
dc.description.references Corma, A., Ródenas, T., & Sabater, M. J. (2012). Aerobic oxidation of thiols to disulfides by heterogeneous goldcatalysts. Chem. Sci., 3(2), 398-404. doi:10.1039/c1sc00466b es_ES
dc.description.references March’s Advanced Organic Chemistry 2007 Michael B.Smith J. March Ed. 6thedition Wiley. es_ES
dc.description.references Harris, J. (1960). Communications: Hydrogen Sulfide Adducts of Halogenated Aldehydes and Ketones. The Journal of Organic Chemistry, 25(12), 2259-2259. doi:10.1021/jo01082a629 es_ES
dc.description.references Field, L., Sweetman, B. J., & Bellas, M. (1969). Biologically oriented organic sulfur chemistry. II. Formation of hemimercaptals or hemimercaptoles (.alpha.-hydroxy sulfides) as a means of latentiating thiols. Journal of Medicinal Chemistry, 12(4), 624-628. doi:10.1021/jm00304a014 es_ES
dc.description.references Woodward, R. B., & Brehm, W. J. (1948). The Structure of Strychnine. Formulation of the Neo Bases. Journal of the American Chemical Society, 70(6), 2107-2115. doi:10.1021/ja01186a034 es_ES
dc.description.references Madabhushi, S., Mallu, K. K. R., Chinthala, N., Beeram, C. R., & Vangipuram, V. S. (2012). Efficient and chemoselective acetalization and thioacetalization of carbonyls and subsequent deprotection using InF3 as a reusable catalyst. Tetrahedron Letters, 53(6), 697-701. doi:10.1016/j.tetlet.2011.11.135 es_ES
dc.description.references Barnett, R. E., & Jencks, W. P. (1969). Diffusion-controlled and concerted base catalysis in the decomposition of hemithioacetals. Journal of the American Chemical Society, 91(24), 6758-6765. doi:10.1021/ja01052a038 es_ES
dc.description.references Mori, K., Hara, T., Mizugaki, T., Ebitani, K., & Kaneda, K. (2004). Hydroxyapatite-Supported Palladium Nanoclusters:  A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen. Journal of the American Chemical Society, 126(34), 10657-10666. doi:10.1021/ja0488683 es_ES
dc.description.references Abad, A., Almela, C., Corma, A., & García, H. (2006). Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts. Tetrahedron, 62(28), 6666-6672. doi:10.1016/j.tet.2006.01.118 es_ES
dc.description.references Sugiyama, S., Minami, T., Hayashi, H., Tanaka, M., Shigemoto, N., & Moffat, J. B. (1996). Enhancement of the selectivity to carbon monoxide with feedstream doping by tetrachloromethane in the oxidation of methane on stoichiometric calcium hydroxyapatite. Journal of the Chemical Society, Faraday Transactions, 92(2), 293. doi:10.1039/ft9969200293 es_ES
dc.description.references CLIMENT, M., CORMA, A., IBORRA, S., & MIFSUD, M. (2007). MgO nanoparticle-based multifunctional catalysts in the cascade reaction allows the green synthesis of anti-inflammatory agents. Journal of Catalysis, 247(2), 223-230. doi:10.1016/j.jcat.2007.02.003 es_ES
dc.description.references CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027 es_ES
dc.description.references Corma, A., Navas, J., & Sabater, M. J. (2012). Coupling of Two Multistep Catalytic Cycles for the One-Pot Synthesis of Propargylamines from Alcohols and Primary Amines on a Nanoparticulated Gold Catalyst. Chemistry - A European Journal, 18(44), 14150-14156. doi:10.1002/chem.201201837 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem