- -

The nature of the electro-catalytic response of mixed metal oxides: Pt- and Ru-doped SnO2 anodes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The nature of the electro-catalytic response of mixed metal oxides: Pt- and Ru-doped SnO2 anodes

Show full item record

Berenguer Betrián, R.; Quijada, C.; Morallón, E. (2019). The nature of the electro-catalytic response of mixed metal oxides: Pt- and Ru-doped SnO2 anodes. ChemElectroChem. 6(4):1057-1068. https://doi.org/10.1002/celc.201801632

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141423

Files in this item

Item Metadata

Title: The nature of the electro-catalytic response of mixed metal oxides: Pt- and Ru-doped SnO2 anodes
Author: Berenguer Betrián, Raúl Quijada, C. Morallón, Emilia
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera
Issued date:
Abstract:
[EN] The catalytic behavior of metal oxides for oxidative reactions is generally classified into active or non-active, depending on whether surface redox species participate or not. In the case of mixed metal oxides, ...[+]
Subjects: Pt-doped tin dioxide electrodes , Ru-doped tin dioxide electrodes , DSA , Electrocatalysis , Impedance spectroscopy
Copyrigths: Reserva de todos los derechos
Source:
ChemElectroChem. (eissn: 2196-0216 )
DOI: 10.1002/celc.201801632
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/celc.201801632
Project ID:
MINECO-FEDER/MAT2016-76595-R
info:eu-repo/grantAgreement/MINECO//IJCI-2014-20012/ES/IJCI-2014-20012/
Description: "This is the peer reviewed version of the following article: The nature of the electro-catalytic response of mixed metal oxides: Pt- and Ru-doped SnO2 anodes, which has been published in final form at https://doi.org/10.1002/celc.201801632. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Thanks:
Financial support from the Spanish Ministerio de Economia y Competitividad and FEDER funds (MAT2016-76595-R, IJCI-201420012) is gratefully acknowledged.
Type: Artículo

References

K. Rajeshwar J. G. Ibanez (Eds.) in Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement Academic Press Inc. San Diego 1997.

Martínez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev., 35(12), 1324-1340. doi:10.1039/b517632h

Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166-167, 603-643. doi:10.1016/j.apcatb.2014.11.016 [+]
K. Rajeshwar J. G. Ibanez (Eds.) in Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement Academic Press Inc. San Diego 1997.

Martínez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev., 35(12), 1324-1340. doi:10.1039/b517632h

Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166-167, 603-643. doi:10.1016/j.apcatb.2014.11.016

Panizza, M., & Cerisola, G. (2009). Direct And Mediated Anodic Oxidation of Organic Pollutants. Chemical Reviews, 109(12), 6541-6569. doi:10.1021/cr9001319

Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39(11-12), 1857-1862. doi:10.1016/0013-4686(94)85175-1

Martínez-Huitle, C. A., Ferro, S., & De Battisti, A. (2005). Electrochemical Incineration in the Presence of Halides. Electrochemical and Solid-State Letters, 8(11), D35. doi:10.1149/1.2042628

Scialdone, O., Galia, A., Guarisco, C., Randazzo, S., & Filardo, G. (2008). Electrochemical incineration of oxalic acid at boron doped diamond anodes: Role of operative parameters. Electrochimica Acta, 53(5), 2095-2108. doi:10.1016/j.electacta.2007.09.007

Scialdone, O., Randazzo, S., Galia, A., & Filardo, G. (2009). Electrochemical oxidation of organics at metal oxide electrodes: The incineration of oxalic acid at IrO2–Ta2O5 (DSA-O2) anode. Electrochimica Acta, 54(4), 1210-1217. doi:10.1016/j.electacta.2008.08.064

Scialdone, O. (2009). Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: A simple theoretical model including direct and indirect oxidation processes at the anodic surface. Electrochimica Acta, 54(26), 6140-6147. doi:10.1016/j.electacta.2009.05.066

Kapałka, A., Lanova, B., Baltruschat, H., Fóti, G., & Comninellis, C. (2008). Electrochemically induced mineralization of organics by molecular oxygen on boron-doped diamond electrode. Electrochemistry Communications, 10(9), 1215-1218. doi:10.1016/j.elecom.2008.06.005

Kapałka, A., Fóti, G., & Comninellis, C. (2007). Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. Journal of Applied Electrochemistry, 38(1), 7-16. doi:10.1007/s10800-007-9365-6

Kapałka, A., Fóti, G., & Comninellis, C. (2009). The importance of electrode material in environmental electrochemistry. Electrochimica Acta, 54(7), 2018-2023. doi:10.1016/j.electacta.2008.06.045

Kapałka, A., Baltruschat, H., & Comninellis, C. (2011). Electrochemical Oxidation of Organic Compounds Induced by Electro-Generated Free Hydroxyl Radicals on BDD Electrodes. Synthetic Diamond Films, 237-260. doi:10.1002/9781118062364.ch10

Martínez-Huitle, C. A., Quiroz, M. A., Comninellis, C., Ferro, S., & Battisti, A. D. (2004). Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes. Electrochimica Acta, 50(4), 949-956. doi:10.1016/j.electacta.2004.07.035

Scialdone, O., Randazzo, S., Galia, A., & Silvestri, G. (2009). Electrochemical oxidation of organics in water: Role of operative parameters in the absence and in the presence of NaCl. Water Research, 43(8), 2260-2272. doi:10.1016/j.watres.2009.02.014

S. Trasatti (Ed.) inStudies in Physical and Theoretical Chemistry. Vol. 11. Electrodes of Conductive Metallic oxides. Part. A-B Elsevier Science Publishers Amsterdam 1980/1981.

Trasatti, S. (2000). Electrocatalysis: understanding the success of DSA®. Electrochimica Acta, 45(15-16), 2377-2385. doi:10.1016/s0013-4686(00)00338-8

Ch. Comninellis G. Chen

Panizza, M., Michaud, P. A., Cerisola, G., & Comninellis, C. (2001). Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. Journal of Electroanalytical Chemistry, 507(1-2), 206-214. doi:10.1016/s0022-0728(01)00398-9

Iniesta, J. (2001). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochimica Acta, 46(23), 3573-3578. doi:10.1016/s0013-4686(01)00630-2

Scialdone, O., Guarisco, C., & Galia, A. (2011). Oxidation of organics in water in microfluidic electrochemical reactors: Theoretical model and experiments. Electrochimica Acta, 58, 463-473. doi:10.1016/j.electacta.2011.09.073

Polcaro, A. M., Mascia, M., Palmas, S., & Vacca, A. (2002). Kinetic Study on the Removal of Organic Pollutants by an Electrochemical Oxidation Process. Industrial & Engineering Chemistry Research, 41(12), 2874-2881. doi:10.1021/ie010669u

Subba Rao, A. N., & Venkatarangaiah, V. T. (2013). Metal oxide-coated anodes in wastewater treatment. Environmental Science and Pollution Research, 21(5), 3197-3217. doi:10.1007/s11356-013-2313-6

Wu, W., Huang, Z.-H., & Lim, T.-T. (2014). Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Applied Catalysis A: General, 480, 58-78. doi:10.1016/j.apcata.2014.04.035

Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2015). Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chemical Reviews, 115(24), 13362-13407. doi:10.1021/acs.chemrev.5b00361

Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217-261. doi:10.1016/j.apcatb.2016.08.037

Berenguer, R., Valdés-Solís, T., Fuertes, A. B., Quijada, C., & Morallón, E. (2008). Cyanide and Phenol Oxidation on Nanostructured Co[sub 3]O[sub 4] Electrodes Prepared by Different Methods. Journal of The Electrochemical Society, 155(7), K110. doi:10.1149/1.2917210

Ch. Comninellis Electrochemical treatment of waste water containing phenol Trans. IChemE1992 70 219–224.

Stucki, S., K�tz, R., Carcer, B., & Suter, W. (1991). Electrochemical waste water treatment using high overvoltage anodes Part II: Anode performance and applications. Journal of Applied Electrochemistry, 21(2), 99-104. doi:10.1007/bf01464288

Comninellis, C., & Pulgarin, C. (1993). Electrochemical oxidation of phenol for wastewater treatment using SnO2, anodes. Journal of Applied Electrochemistry, 23(2). doi:10.1007/bf00246946

Rodgers, J. D., Jedral, W., & Bunce, N. J. (1999). Electrochemical Oxidation of Chlorinated Phenols. Environmental Science & Technology, 33(9), 1453-1457. doi:10.1021/es9808189

Montilla, F., Morallón, E., & Vázquez, J. L. (2005). Evaluation of the Electrocatalytic Activity of Antimony-Doped Tin Dioxide Anodes toward the Oxidation of Phenol in Aqueous Solutions. Journal of The Electrochemical Society, 152(10), B421. doi:10.1149/1.2013047

CORREA-LOZANO, B., COMNINELLIS, C., & BATTISTI, A. D. (1997). Journal of Applied Electrochemistry, 27(8), 970-974. doi:10.1023/a:1018414005000

VICENT, F., MORALLO´N, E., QUIJADA, C., L.VA´ZQUEZ, J., ALDAZ, A., & CASES, F. (1998). Journal of Applied Electrochemistry, 28(6), 607-612. doi:10.1023/a:1003250118996

Forti, J. C., Olivi, P., & de Andrade, A. R. (2001). Characterisation of DSA®-type coatings with nominal composition Ti/Ru0.3Ti(0.7−x)SnxO2 prepared via a polymeric precursor. Electrochimica Acta, 47(6), 913-920. doi:10.1016/s0013-4686(01)00791-5

Montilla, F., Morallón, E., De Battisti, A., & Vázquez, J. L. (2004). Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization. The Journal of Physical Chemistry B, 108(16), 5036-5043. doi:10.1021/jp037480b

Berenguer, R., La Rosa-Toro, A., Quijada, C., & Morallón, E. (2008). Origin of the Deactivation of Spinel CuxCo3−xO4/Ti Anodes Prepared by Thermal Decomposition. The Journal of Physical Chemistry C, 112(43), 16945-16952. doi:10.1021/jp804403x

Adams, B., Tian, M., & Chen, A. (2009). Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochimica Acta, 54(5), 1491-1498. doi:10.1016/j.electacta.2008.09.034

Berenguer, R., Sieben, J. M., Quijada, C., & Morallón, E. (2014). Pt- and Ru-Doped SnO2–Sb Anodes with High Stability in Alkaline Medium. ACS Applied Materials & Interfaces, 6(24), 22778-22789. doi:10.1021/am506958k

Berenguer, R., Sieben, J. M., Quijada, C., & Morallón, E. (2016). Electrocatalytic degradation of phenol on Pt- and Ru-doped Ti/SnO 2 -Sb anodes in an alkaline medium. Applied Catalysis B: Environmental, 199, 394-404. doi:10.1016/j.apcatb.2016.06.038

Berenguer, R., Quijada, C., & Morallón, E. (2009). Electrochemical characterization of SnO2 electrodes doped with Ru and Pt. Electrochimica Acta, 54(22), 5230-5238. doi:10.1016/j.electacta.2009.04.016

A. J. Bard L. R. Faulkner (Eds.) inElectrochemical Methods John Wiley& Sons New York 1980.

Montilla, F., Morallón, E., De Battisti, A., Benedetti, A., Yamashita, H., & Vázquez, J. L. (2004). Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 2. XRD and EXAFS Characterization. The Journal of Physical Chemistry B, 108(16), 5044-5050. doi:10.1021/jp0374814

He, Y., Li, H., Zou, X., Bai, N., Cao, Y., Cao, Y., … Li, G.-D. (2017). Platinum dioxide activated porous SnO2 microspheres for the detection of trace formaldehyde at low operating temperature. Sensors and Actuators B: Chemical, 244, 475-481. doi:10.1016/j.snb.2017.01.014

Santos, A. L., Profeti, D., & Olivi, P. (2005). Electrooxidation of methanol on Pt microparticles dispersed on SnO2 thin films. Electrochimica Acta, 50(13), 2615-2621. doi:10.1016/j.electacta.2004.11.006

Doyle, R. L., & Lyons, M. E. G. (2016). The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design. Photoelectrochemical Solar Fuel Production, 41-104. doi:10.1007/978-3-319-29641-8_2

Lyons, M. E. G., & Floquet, S. (2011). Mechanism of oxygen reactions at porous oxide electrodes. Part 2—Oxygen evolution at RuO2, IrO2 and IrxRu1−xO2 electrodes in aqueous acid and alkaline solution. Physical Chemistry Chemical Physics, 13(12), 5314. doi:10.1039/c0cp02875d

Rochefort, D., Dabo, P., Guay, D., & Sherwood, P. M. A. (2003). XPS investigations of thermally prepared RuO2 electrodes in reductive conditions. Electrochimica Acta, 48(28), 4245-4252. doi:10.1016/s0013-4686(03)00611-x

Gaudet, J., Tavares, A. C., Trasatti, S., & Guay, D. (2005). Physicochemical Characterization of Mixed RuO2−SnO2Solid Solutions. Chemistry of Materials, 17(6), 1570-1579. doi:10.1021/cm048129l

Conway, B. E. (1999). Electrochemical Supercapacitors. doi:10.1007/978-1-4757-3058-6

Ribeiro, J., & de Andrade, A. R. (2006). Investigation of the electrical properties, charging process, and passivation of RuO2–Ta2O5 oxide films. Journal of Electroanalytical Chemistry, 592(2), 153-162. doi:10.1016/j.jelechem.2006.05.004

Lodi, G., Zucchini, G., De Battisti, A., Sivieri, E., & Trasatti, S. (1978). On some debated aspects of the behaviour of RuO2 film electrodes. Materials Chemistry, 3(3), 179-188. doi:10.1016/0390-6035(78)90023-8

McEvoy, A. J., & Gissler, W. (1982). A ruthenium dioxide‐semiconductor Schottky barrier photovoltaic device. Journal of Applied Physics, 53(2), 1251-1252. doi:10.1063/1.330541

Wu, N. L., Hwang, J. Y., Liu, P. Y., Han, C. Y., Kuo, S. L., Liao, K. H., … Wang, S. Y. (2001). Synthesis and Characterization of Sb-Doped SnO[sub 2] Xerogel Electrochemical Capacitor. Journal of The Electrochemical Society, 148(6), A550. doi:10.1149/1.1368099

Sugimoto, W., Kizaki, T., Yokoshima, K., Murakami, Y., & Takasu, Y. (2004). Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode. Electrochimica Acta, 49(2), 313-320. doi:10.1016/j.electacta.2003.08.013

Ardizzone, S., Fregonara, G., & Trasatti, S. (1990). «Inner» and «outer» active surface of RuO2 electrodes. Electrochimica Acta, 35(1), 263-267. doi:10.1016/0013-4686(90)85068-x

Iwakura, C., & Sakamoto, K. (1985). Effect of Active Layer Composition on the Service Life of  ( SnO2   and RuO2 )  ‐ Coated Ti Electrodes in Sulfuric Acid Solution. Journal of The Electrochemical Society, 132(10), 2420-2423. doi:10.1149/1.2113590

J. O. M. Bockris A. K. N. Reddy M. E. Gamboa-Aldeco

Doyle, R. L., & Lyons, M. E. G. (2013). An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Physical Chemistry Chemical Physics, 15(14), 5224. doi:10.1039/c3cp43464h

Matsumoto, Y., & Sato, E. (1986). Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Materials Chemistry and Physics, 14(5), 397-426. doi:10.1016/0254-0584(86)90045-3

Gattrell, M., & Kirk, D. W. (1993). A Study of the Oxidation of Phenol at Platinum and Preoxidized Platinum Surfaces. Journal of The Electrochemical Society, 140(6), 1534-1540. doi:10.1149/1.2221598

Lapuente, R., Cases, F., Garcés, P., Morallón, E., & Vázquez, J. . (1998). A voltammetric and FTIR–ATR study of the electropolymerization of phenol on platinum electrodes in carbonate medium. Journal of Electroanalytical Chemistry, 451(1-2), 163-171. doi:10.1016/s0022-0728(98)00098-9

Lapuente, R., Quijada, C., Huerta, F., Cases, F., & Vázquez, J. L. (2003). X-Ray Photoelectron Spectroscopy Study of the Composition of Polyphenol Films Formed on Pt by Electropolymerisation of Phenol in the Presence of Sulphide in Carbonate Medium. Polymer Journal, 35(12), 911-919. doi:10.1295/polymj.35.911

Panić, V. V., Dekanski, A. B., Vidaković, T. R., Mišković-Stanković, V. B., Javanović, B. Ž., & Nikolić, B. Ž. (2004). Oxidation of phenol on RuO2–TiO2/Ti anodes. Journal of Solid State Electrochemistry, 9(1), 43-54. doi:10.1007/s10008-004-0559-0

Feng, Y. ., & Li, X. . (2003). Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Research, 37(10), 2399-2407. doi:10.1016/s0043-1354(03)00026-5

Li, X., Cui, Y., Feng, Y., Xie, Z., & Gu, J.-D. (2005). Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Research, 39(10), 1972-1981. doi:10.1016/j.watres.2005.02.021

Zanta, C. L. P. S., de Andrade, A. R., & Boodts, J. F. C. (2000). Journal of Applied Electrochemistry, 30(4), 467-474. doi:10.1023/a:1003942411733

Cestarolli, D. T., & de Andrade, A. R. (2007). Electrochemical Oxidation of Phenol at Ti∕Ru[sub 0.3]Pb[sub (0.7−x)]Ti[sub x]O[sub y] Electrodes in Aqueous Media. Journal of The Electrochemical Society, 154(2), E25. doi:10.1149/1.2405722

Wels, B., & Johnson, D. C. (1990). Electrocatalysis of Anodic Oxygen Transfer Reactions: Oxidation of Cyanide at Electrodeposited Copper Oxide Electrodes in Alkaline Media. Journal of The Electrochemical Society, 137(9), 2785-2791. doi:10.1149/1.2087072

Berenguer, R., La Rosa-Toro, A., Quijada, C., & Morallón, E. (2017). Electrocatalytic oxidation of cyanide on copper-doped cobalt oxide electrodes. Applied Catalysis B: Environmental, 207, 286-296. doi:10.1016/j.apcatb.2017.01.078

Berenguer, R., Quijada, C., La Rosa-Toro, A., & Morallón, E. (2019). Electro-oxidation of cyanide on active and non-active anodes: Designing the electrocatalytic response of cobalt spinels. Separation and Purification Technology, 208, 42-50. doi:10.1016/j.seppur.2018.05.024

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record