Mostrar el registro sencillo del ítem
dc.contributor.author | Balart, Rafael | es_ES |
dc.contributor.author | Garcia-Sanoguera, David | es_ES |
dc.contributor.author | Quiles-Carrillo, Luis | es_ES |
dc.contributor.author | Montanes, Nestor | es_ES |
dc.contributor.author | Torres-Giner, S. | es_ES |
dc.date.accessioned | 2020-04-24T07:13:09Z | |
dc.date.available | 2020-04-24T07:13:09Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141430 | |
dc.description.abstract | [EN] This work presents an in-depth kinetic study of the thermal degradation of recycled acrylonitrile-butadiene-styrene (ABS) polymer. Non-isothermal thermogravimetric analysis (TGA) data in nitrogen atmosphere at different heating rates comprised between 2 and 30 K min¿1 were used to obtain the apparent activation energy (Ea) of the thermal degradation process of ABS by isoconversional (differential and integral) model-free methods. Among others, the differential Friedman method was used. Regarding integral methods, several methods with different approximations of the temperature integral were used, which gave different accuracies in Ea. In particular, the Flynn-Wall-Ozawa (FWO), the Kissinger-Akahira-Sunose (KAS), and the Starink methods were used. The results obtained by these methods were compared to the Kissinger method based on peak temperature (Tm) measurements at the maximum degradation rate. Combined Kinetic Analysis (CKA) was also carried out by using a modified expression derived from the general Sestak-Berggren equation with excellent results compared with the previous methods. Isoconversional methods revealed negligible variation of Ea with the conversion. Furthermore, the reaction model was assessed by calculating the characteristic "y(¿)" and "z(¿)" functions and comparing them with some master plots, resulting in a nth order reaction model with n = 1.4950, which allowed calculating the pre-exponential factor (A) of the Arrhenius constant. The results showed that Ea of the thermal degradation of ABS was 163.3 kJ mol¿1, while ln A was 27.5410 (A in min¿1). The predicted values obtained by integration of the general kinetic expression with the calculated kinetic triplet were in full agreement with the experimental data, thus giving evidence of the accuracy of the obtained kinetic parameters. | es_ES |
dc.description.sponsorship | This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) program numbers MAT2017-84909-C2-2-R. L.Q.-C. wants to thank the Generalitat Valenciana (GVA) for his FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812), while S.T.-G. is a recipient of a Juan de la Cierva - Incorporacion contract (IJCI-2016-29675) from MINECO. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Polymers | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Thermal degradation | es_ES |
dc.subject | Acrylonitrile-butadiene-styrene (ABS) | es_ES |
dc.subject | Thermogravimetric analysis (TGA) | es_ES |
dc.subject | Model free kinetics (MFK) | es_ES |
dc.subject | Combined kinetic analysis (CKA) | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Kinetic Analysis of the Thermal Degradation of Recycled Acrylonitrile-Butadiene-Styrene by non-Isothermal Thermogravimetry | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/polym11020281 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Balart, R.; Garcia-Sanoguera, D.; Quiles-Carrillo, L.; Montanes, N.; Torres-Giner, S. (2019). Kinetic Analysis of the Thermal Degradation of Recycled Acrylonitrile-Butadiene-Styrene by non-Isothermal Thermogravimetry. Polymers. 11(2). https://doi.org/10.3390/polym11020281 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/polym11020281 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2073-4360 | es_ES |
dc.relation.pasarela | S\377656 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Scaffaro, R., Botta, L., & Di Benedetto, G. (2012). Physical properties of virgin-recycled ABS blends: Effect of post-consumer content and of reprocessing cycles. European Polymer Journal, 48(3), 637-648. doi:10.1016/j.eurpolymj.2011.12.018 | es_ES |
dc.description.references | Tiganis, B. ., Burn, L. ., Davis, P., & Hill, A. . (2002). Thermal degradation of acrylonitrile–butadiene–styrene (ABS) blends. Polymer Degradation and Stability, 76(3), 425-434. doi:10.1016/s0141-3910(02)00045-9 | es_ES |
dc.description.references | Niemczyk, A., Dziubek, K., Sacher-Majewska, B., Czaja, K., Czech-Polak, J., Oliwa, R., … Szołyga, M. (2018). Thermal Stability and Flame Retardancy of Polypropylene Composites Containing Siloxane-Silsesquioxane Resins. Polymers, 10(9), 1019. doi:10.3390/polym10091019 | es_ES |
dc.description.references | Chieng, B., Ibrahim, N., Yunus, W., & Hussein, M. (2013). Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers, 6(1), 93-104. doi:10.3390/polym6010093 | es_ES |
dc.description.references | Zhang, X., Wu, Y., Chen, X., Wen, H., & Xiao, S. (2017). Theoretical Study on Decomposition Mechanism of Insulating Epoxy Resin Cured by Anhydride. Polymers, 9(12), 341. doi:10.3390/polym9080341 | es_ES |
dc.description.references | Ramesh, V., Biswal, M., Mohanty, S., & Nayak, S. K. (2014). Compatibilization effect of EVA-g-MAH on mechanical, morphological and rheological properties of recycled PC/ABS blend. Materials Express, 4(6), 499-507. doi:10.1166/mex.2014.1198 | es_ES |
dc.description.references | Kuram, E., Ozcelik, B., Yilmaz, F., Timur, G., & Sahin, Z. M. (2014). The effect of recycling number on the mechanical, chemical, thermal, and rheological properties of PBT/PC/ABS ternary blends: With and without glass-fiber. Polymer Composites, 35(10), 2074-2084. doi:10.1002/pc.22869 | es_ES |
dc.description.references | Balart, R., López, J., García, D., & Dolores Salvador, M. (2005). Recycling of ABS and PC from electrical and electronic waste. Effect of miscibility and previous degradation on final performance of industrial blends. European Polymer Journal, 41(9), 2150-2160. doi:10.1016/j.eurpolymj.2005.04.001 | es_ES |
dc.description.references | Khatri, B., Lappe, K., Habedank, M., Mueller, T., Megnin, C., & Hanemann, T. (2018). Fused Deposition Modeling of ABS-Barium Titanate Composites: A Simple Route towards Tailored Dielectric Devices. Polymers, 10(6), 666. doi:10.3390/polym10060666 | es_ES |
dc.description.references | Hart, K. R., & Wetzel, E. D. (2017). Fracture behavior of additively manufactured acrylonitrile butadiene styrene (ABS) materials. Engineering Fracture Mechanics, 177, 1-13. doi:10.1016/j.engfracmech.2017.03.028 | es_ES |
dc.description.references | Ramirez, N. V., & Sanchez-Soto, M. (2012). Effects of poss nanoparticles on ABS-g -Ma thermo oxidation resistance. Polymer Composites, 33(10), 1707-1718. doi:10.1002/pc.22304 | es_ES |
dc.description.references | Duh, Y.-S., Ho, T.-C., Chen, J.-R., & Kao, C.-S. (2010). Study on Exothermic Oxidation of Acrylonitrile-butadiene-styrene (ABS) Resin Powder with Application to ABS Processing Safety. Polymers, 2(3), 174-187. doi:10.3390/polym2030174 | es_ES |
dc.description.references | Polli, H., Pontes, L. A. M., Araujo, A. S., Barros, J. M. F., & Fernandes, V. J. (2009). Degradation behavior and kinetic study of ABS polymer. Journal of Thermal Analysis and Calorimetry, 95(1), 131-134. doi:10.1007/s10973-006-7781-1 | es_ES |
dc.description.references | Suzuki, M., & Wilkie, C. A. (1995). The thermal degradation of acrylonitrile-butadiene-styrene terpolymei as studied by TGA/FTIR. Polymer Degradation and Stability, 47(2), 217-221. doi:10.1016/0141-3910(94)00122-o | es_ES |
dc.description.references | Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polymer Degradation and Stability, 95(5), 733-739. doi:10.1016/j.polymdegradstab.2010.02.017 | es_ES |
dc.description.references | Perejón, A., Sánchez-Jiménez, P. E., Gil-González, E., Pérez-Maqueda, L. A., & Criado, J. M. (2013). Pyrolysis kinetics of ethylene–propylene (EPM) and ethylene–propylene–diene (EPDM). Polymer Degradation and Stability, 98(9), 1571-1577. doi:10.1016/j.polymdegradstab.2013.06.029 | es_ES |
dc.description.references | Carrasco, F., Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Perejón, A., Santana, O. O., & Maspoch, M. L. (2013). Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission. Polymer Testing, 32(5), 937-945. doi:10.1016/j.polymertesting.2013.04.013 | es_ES |
dc.description.references | Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Perejón, A., García-Garrido, C., Criado, J. M., & Benítez-Guerrero, M. (2014). Scission kinetic model for the prediction of polymer pyrolysis curves from chain structure. Polymer Testing, 37, 1-5. doi:10.1016/j.polymertesting.2014.04.004 | es_ES |
dc.description.references | Di Cortemiglia, M. P. L., Camino, G., Costa, L., & Guaita, M. (1985). Thermal degradation of ABS. Thermochimica Acta, 93, 187-190. doi:10.1016/0040-6031(85)85048-6 | es_ES |
dc.description.references | Day, M., Cooney, J. D., & MacKinnon, M. (1995). Degradation of contaminated plastics: a kinetic study. Polymer Degradation and Stability, 48(3), 341-349. doi:10.1016/0141-3910(95)00088-4 | es_ES |
dc.description.references | Balart, R., Sánchez, L., López, J., & Jiménez, A. (2006). Kinetic analysis of thermal degradation of recycled polycarbonate/acrylonitrile–butadiene–styrene mixtures from waste electric and electronic equipment. Polymer Degradation and Stability, 91(3), 527-534. doi:10.1016/j.polymdegradstab.2005.01.055 | es_ES |
dc.description.references | Stanko, M., & Stommel, M. (2018). Kinetic Prediction of Fast Curing Polyurethane Resins by Model-Free Isoconversional Methods. Polymers, 10(7), 698. doi:10.3390/polym10070698 | es_ES |
dc.description.references | Starink, M. . (2003). The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica Acta, 404(1-2), 163-176. doi:10.1016/s0040-6031(03)00144-8 | es_ES |
dc.description.references | Lyon, R. E. (1997). An integral method of nonisothermal kinetic analysis. Thermochimica Acta, 297(1-2), 117-124. doi:10.1016/s0040-6031(97)00158-5 | es_ES |
dc.description.references | Shao, J., Wang, J., Long, M., Li, J., & Ma, Y. (2017). 5000 h Multi-Factor Accelerated Aging Test of FRP Made Transmission Tower: Characterization, Thermal Decomposition and Reaction Kinetics Study. Polymers, 9(12), 170. doi:10.3390/polym9050170 | es_ES |
dc.description.references | Doyle, C. D. (1961). Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 5(15), 285-292. doi:10.1002/app.1961.070051506 | es_ES |
dc.description.references | Doyle, C. D. (1962). Estimating isothermal life from thermogravimetric data. Journal of Applied Polymer Science, 6(24), 639-642. doi:10.1002/app.1962.070062406 | es_ES |
dc.description.references | Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4(5), 323-328. doi:10.1002/pol.1966.110040504 | es_ES |
dc.description.references | Ozawa, T. (1965). A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society of Japan, 38(11), 1881-1886. doi:10.1246/bcsj.38.1881 | es_ES |
dc.description.references | Zhao, S. F., Zhang, G. P., Sun, R., & Wong, C. P. (2014). Curing kinetics, mechanism and chemorheological behavior of methanol etherified amino/novolac epoxy systems. Express Polymer Letters, 8(2), 95-106. doi:10.3144/expresspolymlett.2014.12 | es_ES |
dc.description.references | Kissinger, H. E. (1957). Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 29(11), 1702-1706. doi:10.1021/ac60131a045 | es_ES |
dc.description.references | Pérez-Maqueda, L. A., Criado, J. M., & Sánchez-Jiménez, P. E. (2006). Combined Kinetic Analysis of Solid-State Reactions: A Powerful Tool for the Simultaneous Determination of Kinetic Parameters and the Kinetic Model without Previous Assumptions on the Reaction Mechanism. The Journal of Physical Chemistry A, 110(45), 12456-12462. doi:10.1021/jp064792g | es_ES |
dc.description.references | Šesták, J., & Berggren, G. (1971). Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochimica Acta, 3(1), 1-12. doi:10.1016/0040-6031(71)85051-7 | es_ES |
dc.description.references | Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2009). Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polymer Degradation and Stability, 94(11), 2079-2085. doi:10.1016/j.polymdegradstab.2009.07.006 | es_ES |
dc.description.references | Senum, G. I., & Yang, R. T. (1977). Rational approximations of the integral of the Arrhenius function. Journal of Thermal Analysis, 11(3), 445-447. doi:10.1007/bf01903696 | es_ES |
dc.description.references | Pérez-Maqueda, L. A., & Criado, J. M. (2000). Journal of Thermal Analysis and Calorimetry, 60(3), 909-915. doi:10.1023/a:1010115926340 | es_ES |
dc.description.references | Flynn, J. H. (1997). The ‘Temperature Integral’ — Its use and abuse. Thermochimica Acta, 300(1-2), 83-92. doi:10.1016/s0040-6031(97)00046-4 | es_ES |
dc.description.references | Mianowski, A. (2003). The kissinger law and isokinetic effect. Journal of Thermal Analysis and Calorimetry, 74(3), 953-973. doi:10.1023/b:jtan.0000011027.59338.54 | es_ES |
dc.description.references | Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520(1-2), 1-19. doi:10.1016/j.tca.2011.03.034 | es_ES |
dc.description.references | Criado, J. M., & Ortega, A. (1987). Non-isothermal crystallization kinetics of metal glasses: simultaneous determination of both the activation energy and the exponent n of the JMA kinetic law. Acta Metallurgica, 35(7), 1715-1721. doi:10.1016/0001-6160(87)90117-9 | es_ES |
dc.description.references | Criado, J. M., & Ortega, A. (1986). Non-isothermal transformation kinetics: Remarks on the Kissinger method. Journal of Non-Crystalline Solids, 87(3), 302-311. doi:10.1016/s0022-3093(86)80004-7 | es_ES |
dc.description.references | Farjas, J., Butchosa, N., & Roura, P. (2010). A simple kinetic method for the determination of the reaction model from non-isothermal experiments. Journal of Thermal Analysis and Calorimetry, 102(2), 615-625. doi:10.1007/s10973-010-0737-5 | es_ES |
dc.description.references | Mamleev, V., Bourbigot, S., Le Bras, M., & Lefebvre, J. (2004). Three model-free methods for calculation of activation energy in TG. Journal of Thermal Analysis and Calorimetry, 78(3), 1009-1027. doi:10.1007/s10973-005-0467-0 | es_ES |
dc.description.references | Nikolaidis, A., & Achilias, D. (2018). Thermal Degradation Kinetics and Viscoelastic Behavior of Poly(Methyl Methacrylate)/Organomodified Montmorillonite Nanocomposites Prepared via In Situ Bulk Radical Polymerization. Polymers, 10(5), 491. doi:10.3390/polym10050491 | es_ES |
dc.description.references | Flynn, J. H. (1991). A general differential technique for the determination of parameters for d(α)/dt=f(α)A exp (−E/RT). Journal of Thermal Analysis, 37(2), 293-305. doi:10.1007/bf02055932 | es_ES |
dc.description.references | Sbirrazzuoli, N., Vincent, L., Mija, A., & Guigo, N. (2009). Integral, differential and advanced isoconversional methods. Chemometrics and Intelligent Laboratory Systems, 96(2), 219-226. doi:10.1016/j.chemolab.2009.02.002 | es_ES |
dc.description.references | Flynn, J. H. (1983). The isoconversional method for determination of energy of activation at constant heating rates. Journal of Thermal Analysis, 27(1), 95-102. doi:10.1007/bf01907325 | es_ES |
dc.description.references | Venkatesh, M., Ravi, P., & Tewari, S. P. (2013). Isoconversional Kinetic Analysis of Decomposition of Nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa Method. The Journal of Physical Chemistry A, 117(40), 10162-10169. doi:10.1021/jp407526r | es_ES |
dc.description.references | Huang, F.-Y. (2012). Thermal Properties and Thermal Degradation of Cellulose Tri-Stearate (CTs). Polymers, 4(2), 1012-1024. doi:10.3390/polym4021012 | es_ES |
dc.description.references | Pérez-Maqueda, L. A., Criado, J. M., Gotor, F. J., & Málek, J. (2002). Advantages of Combined Kinetic Analysis of Experimental Data Obtained under Any Heating Profile. The Journal of Physical Chemistry A, 106(12), 2862-2868. doi:10.1021/jp012246b | es_ES |
dc.description.references | García-Garrido, C., Pérez- Maqueda, L. A., Criado, J. M., & Sánchez-Jiménez, P. E. (2018). Combined kinetic analysis of multistep processes of thermal decomposition of polydimethylsiloxane silicone. Polymer, 153, 558-564. doi:10.1016/j.polymer.2018.08.045 | es_ES |
dc.description.references | Yan, Q.-L., Zeman, S., Sánchez Jiménez, P. E., Zhao, F.-Q., Pérez-Maqueda, L. A., & Málek, J. (2014). The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis. Journal of Hazardous Materials, 271, 185-195. doi:10.1016/j.jhazmat.2014.02.019 | es_ES |
dc.description.references | Yahyaoui, R., Jimenez, P. E. S., Maqueda, L. A. P., Nahdi, K., & Luque, J. M. C. (2018). Synthesis, characterization and combined kinetic analysis of thermal decomposition of hydrotalcite (Mg6Al2(OH)16CO3·4H2O). Thermochimica Acta, 667, 177-184. doi:10.1016/j.tca.2018.07.025 | es_ES |
dc.description.references | Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2011). Constant rate thermal analysis for thermal stability studies of polymers. Polymer Degradation and Stability, 96(5), 974-981. doi:10.1016/j.polymdegradstab.2011.01.027 | es_ES |
dc.description.references | Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). Generalized Kinetic Master Plots for the Thermal Degradation of Polymers Following a Random Scission Mechanism. The Journal of Physical Chemistry A, 114(30), 7868-7876. doi:10.1021/jp103171h | es_ES |
dc.description.references | Málek, J., Koga, N., Pérez-Maqueda, L. A., & Criado, J. M. (2013). The Ozawa’s generalized time concept and YZ-master plots as a convenient tool for kinetic analysis of complex processes. Journal of Thermal Analysis and Calorimetry, 113(3), 1437-1446. doi:10.1007/s10973-013-2939-0 | es_ES |
dc.description.references | Pérez-Maqueda, L. A., Ortega, A., & Criado, J. M. (1996). The use of master plots for discriminating the kinetic model of solid state reactions from a single constant-rate thermal analysis (CRTA) experiment. Thermochimica Acta, 277, 165-173. doi:10.1016/0040-6031(95)02746-7 | es_ES |