- -

Kinetic Analysis of the Thermal Degradation of Recycled Acrylonitrile-Butadiene-Styrene by non-Isothermal Thermogravimetry

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Kinetic Analysis of the Thermal Degradation of Recycled Acrylonitrile-Butadiene-Styrene by non-Isothermal Thermogravimetry

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Garcia-Sanoguera, David es_ES
dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.contributor.author Montanes, Nestor es_ES
dc.contributor.author Torres-Giner, S. es_ES
dc.date.accessioned 2020-04-24T07:13:09Z
dc.date.available 2020-04-24T07:13:09Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141430
dc.description.abstract [EN] This work presents an in-depth kinetic study of the thermal degradation of recycled acrylonitrile-butadiene-styrene (ABS) polymer. Non-isothermal thermogravimetric analysis (TGA) data in nitrogen atmosphere at different heating rates comprised between 2 and 30 K min¿1 were used to obtain the apparent activation energy (Ea) of the thermal degradation process of ABS by isoconversional (differential and integral) model-free methods. Among others, the differential Friedman method was used. Regarding integral methods, several methods with different approximations of the temperature integral were used, which gave different accuracies in Ea. In particular, the Flynn-Wall-Ozawa (FWO), the Kissinger-Akahira-Sunose (KAS), and the Starink methods were used. The results obtained by these methods were compared to the Kissinger method based on peak temperature (Tm) measurements at the maximum degradation rate. Combined Kinetic Analysis (CKA) was also carried out by using a modified expression derived from the general Sestak-Berggren equation with excellent results compared with the previous methods. Isoconversional methods revealed negligible variation of Ea with the conversion. Furthermore, the reaction model was assessed by calculating the characteristic "y(¿)" and "z(¿)" functions and comparing them with some master plots, resulting in a nth order reaction model with n = 1.4950, which allowed calculating the pre-exponential factor (A) of the Arrhenius constant. The results showed that Ea of the thermal degradation of ABS was 163.3 kJ mol¿1, while ln A was 27.5410 (A in min¿1). The predicted values obtained by integration of the general kinetic expression with the calculated kinetic triplet were in full agreement with the experimental data, thus giving evidence of the accuracy of the obtained kinetic parameters. es_ES
dc.description.sponsorship This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) program numbers MAT2017-84909-C2-2-R. L.Q.-C. wants to thank the Generalitat Valenciana (GVA) for his FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812), while S.T.-G. is a recipient of a Juan de la Cierva - Incorporacion contract (IJCI-2016-29675) from MINECO. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Thermal degradation es_ES
dc.subject Acrylonitrile-butadiene-styrene (ABS) es_ES
dc.subject Thermogravimetric analysis (TGA) es_ES
dc.subject Model free kinetics (MFK) es_ES
dc.subject Combined kinetic analysis (CKA) es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Kinetic Analysis of the Thermal Degradation of Recycled Acrylonitrile-Butadiene-Styrene by non-Isothermal Thermogravimetry es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym11020281 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Balart, R.; Garcia-Sanoguera, D.; Quiles-Carrillo, L.; Montanes, N.; Torres-Giner, S. (2019). Kinetic Analysis of the Thermal Degradation of Recycled Acrylonitrile-Butadiene-Styrene by non-Isothermal Thermogravimetry. Polymers. 11(2). https://doi.org/10.3390/polym11020281 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym11020281 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.relation.pasarela S\377656 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Scaffaro, R., Botta, L., & Di Benedetto, G. (2012). Physical properties of virgin-recycled ABS blends: Effect of post-consumer content and of reprocessing cycles. European Polymer Journal, 48(3), 637-648. doi:10.1016/j.eurpolymj.2011.12.018 es_ES
dc.description.references Tiganis, B. ., Burn, L. ., Davis, P., & Hill, A. . (2002). Thermal degradation of acrylonitrile–butadiene–styrene (ABS) blends. Polymer Degradation and Stability, 76(3), 425-434. doi:10.1016/s0141-3910(02)00045-9 es_ES
dc.description.references Niemczyk, A., Dziubek, K., Sacher-Majewska, B., Czaja, K., Czech-Polak, J., Oliwa, R., … Szołyga, M. (2018). Thermal Stability and Flame Retardancy of Polypropylene Composites Containing Siloxane-Silsesquioxane Resins. Polymers, 10(9), 1019. doi:10.3390/polym10091019 es_ES
dc.description.references Chieng, B., Ibrahim, N., Yunus, W., & Hussein, M. (2013). Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers, 6(1), 93-104. doi:10.3390/polym6010093 es_ES
dc.description.references Zhang, X., Wu, Y., Chen, X., Wen, H., & Xiao, S. (2017). Theoretical Study on Decomposition Mechanism of Insulating Epoxy Resin Cured by Anhydride. Polymers, 9(12), 341. doi:10.3390/polym9080341 es_ES
dc.description.references Ramesh, V., Biswal, M., Mohanty, S., & Nayak, S. K. (2014). Compatibilization effect of EVA-g-MAH on mechanical, morphological and rheological properties of recycled PC/ABS blend. Materials Express, 4(6), 499-507. doi:10.1166/mex.2014.1198 es_ES
dc.description.references Kuram, E., Ozcelik, B., Yilmaz, F., Timur, G., & Sahin, Z. M. (2014). The effect of recycling number on the mechanical, chemical, thermal, and rheological properties of PBT/PC/ABS ternary blends: With and without glass-fiber. Polymer Composites, 35(10), 2074-2084. doi:10.1002/pc.22869 es_ES
dc.description.references Balart, R., López, J., García, D., & Dolores Salvador, M. (2005). Recycling of ABS and PC from electrical and electronic waste. Effect of miscibility and previous degradation on final performance of industrial blends. European Polymer Journal, 41(9), 2150-2160. doi:10.1016/j.eurpolymj.2005.04.001 es_ES
dc.description.references Khatri, B., Lappe, K., Habedank, M., Mueller, T., Megnin, C., & Hanemann, T. (2018). Fused Deposition Modeling of ABS-Barium Titanate Composites: A Simple Route towards Tailored Dielectric Devices. Polymers, 10(6), 666. doi:10.3390/polym10060666 es_ES
dc.description.references Hart, K. R., & Wetzel, E. D. (2017). Fracture behavior of additively manufactured acrylonitrile butadiene styrene (ABS) materials. Engineering Fracture Mechanics, 177, 1-13. doi:10.1016/j.engfracmech.2017.03.028 es_ES
dc.description.references Ramirez, N. V., & Sanchez-Soto, M. (2012). Effects of poss nanoparticles on ABS-g -Ma thermo oxidation resistance. Polymer Composites, 33(10), 1707-1718. doi:10.1002/pc.22304 es_ES
dc.description.references Duh, Y.-S., Ho, T.-C., Chen, J.-R., & Kao, C.-S. (2010). Study on Exothermic Oxidation of Acrylonitrile-butadiene-styrene (ABS) Resin Powder with Application to ABS Processing Safety. Polymers, 2(3), 174-187. doi:10.3390/polym2030174 es_ES
dc.description.references Polli, H., Pontes, L. A. M., Araujo, A. S., Barros, J. M. F., & Fernandes, V. J. (2009). Degradation behavior and kinetic study of ABS polymer. Journal of Thermal Analysis and Calorimetry, 95(1), 131-134. doi:10.1007/s10973-006-7781-1 es_ES
dc.description.references Suzuki, M., & Wilkie, C. A. (1995). The thermal degradation of acrylonitrile-butadiene-styrene terpolymei as studied by TGA/FTIR. Polymer Degradation and Stability, 47(2), 217-221. doi:10.1016/0141-3910(94)00122-o es_ES
dc.description.references Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polymer Degradation and Stability, 95(5), 733-739. doi:10.1016/j.polymdegradstab.2010.02.017 es_ES
dc.description.references Perejón, A., Sánchez-Jiménez, P. E., Gil-González, E., Pérez-Maqueda, L. A., & Criado, J. M. (2013). Pyrolysis kinetics of ethylene–propylene (EPM) and ethylene–propylene–diene (EPDM). Polymer Degradation and Stability, 98(9), 1571-1577. doi:10.1016/j.polymdegradstab.2013.06.029 es_ES
dc.description.references Carrasco, F., Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Perejón, A., Santana, O. O., & Maspoch, M. L. (2013). Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission. Polymer Testing, 32(5), 937-945. doi:10.1016/j.polymertesting.2013.04.013 es_ES
dc.description.references Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Perejón, A., García-Garrido, C., Criado, J. M., & Benítez-Guerrero, M. (2014). Scission kinetic model for the prediction of polymer pyrolysis curves from chain structure. Polymer Testing, 37, 1-5. doi:10.1016/j.polymertesting.2014.04.004 es_ES
dc.description.references Di Cortemiglia, M. P. L., Camino, G., Costa, L., & Guaita, M. (1985). Thermal degradation of ABS. Thermochimica Acta, 93, 187-190. doi:10.1016/0040-6031(85)85048-6 es_ES
dc.description.references Day, M., Cooney, J. D., & MacKinnon, M. (1995). Degradation of contaminated plastics: a kinetic study. Polymer Degradation and Stability, 48(3), 341-349. doi:10.1016/0141-3910(95)00088-4 es_ES
dc.description.references Balart, R., Sánchez, L., López, J., & Jiménez, A. (2006). Kinetic analysis of thermal degradation of recycled polycarbonate/acrylonitrile–butadiene–styrene mixtures from waste electric and electronic equipment. Polymer Degradation and Stability, 91(3), 527-534. doi:10.1016/j.polymdegradstab.2005.01.055 es_ES
dc.description.references Stanko, M., & Stommel, M. (2018). Kinetic Prediction of Fast Curing Polyurethane Resins by Model-Free Isoconversional Methods. Polymers, 10(7), 698. doi:10.3390/polym10070698 es_ES
dc.description.references Starink, M. . (2003). The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica Acta, 404(1-2), 163-176. doi:10.1016/s0040-6031(03)00144-8 es_ES
dc.description.references Lyon, R. E. (1997). An integral method of nonisothermal kinetic analysis. Thermochimica Acta, 297(1-2), 117-124. doi:10.1016/s0040-6031(97)00158-5 es_ES
dc.description.references Shao, J., Wang, J., Long, M., Li, J., & Ma, Y. (2017). 5000 h Multi-Factor Accelerated Aging Test of FRP Made Transmission Tower: Characterization, Thermal Decomposition and Reaction Kinetics Study. Polymers, 9(12), 170. doi:10.3390/polym9050170 es_ES
dc.description.references Doyle, C. D. (1961). Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 5(15), 285-292. doi:10.1002/app.1961.070051506 es_ES
dc.description.references Doyle, C. D. (1962). Estimating isothermal life from thermogravimetric data. Journal of Applied Polymer Science, 6(24), 639-642. doi:10.1002/app.1962.070062406 es_ES
dc.description.references Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4(5), 323-328. doi:10.1002/pol.1966.110040504 es_ES
dc.description.references Ozawa, T. (1965). A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society of Japan, 38(11), 1881-1886. doi:10.1246/bcsj.38.1881 es_ES
dc.description.references Zhao, S. F., Zhang, G. P., Sun, R., & Wong, C. P. (2014). Curing kinetics, mechanism and chemorheological behavior of methanol etherified amino/novolac epoxy systems. Express Polymer Letters, 8(2), 95-106. doi:10.3144/expresspolymlett.2014.12 es_ES
dc.description.references Kissinger, H. E. (1957). Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 29(11), 1702-1706. doi:10.1021/ac60131a045 es_ES
dc.description.references Pérez-Maqueda, L. A., Criado, J. M., & Sánchez-Jiménez, P. E. (2006). Combined Kinetic Analysis of Solid-State Reactions:  A Powerful Tool for the Simultaneous Determination of Kinetic Parameters and the Kinetic Model without Previous Assumptions on the Reaction Mechanism. The Journal of Physical Chemistry A, 110(45), 12456-12462. doi:10.1021/jp064792g es_ES
dc.description.references Šesták, J., & Berggren, G. (1971). Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochimica Acta, 3(1), 1-12. doi:10.1016/0040-6031(71)85051-7 es_ES
dc.description.references Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2009). Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polymer Degradation and Stability, 94(11), 2079-2085. doi:10.1016/j.polymdegradstab.2009.07.006 es_ES
dc.description.references Senum, G. I., & Yang, R. T. (1977). Rational approximations of the integral of the Arrhenius function. Journal of Thermal Analysis, 11(3), 445-447. doi:10.1007/bf01903696 es_ES
dc.description.references Pérez-Maqueda, L. A., & Criado, J. M. (2000). Journal of Thermal Analysis and Calorimetry, 60(3), 909-915. doi:10.1023/a:1010115926340 es_ES
dc.description.references Flynn, J. H. (1997). The ‘Temperature Integral’ — Its use and abuse. Thermochimica Acta, 300(1-2), 83-92. doi:10.1016/s0040-6031(97)00046-4 es_ES
dc.description.references Mianowski, A. (2003). The kissinger law and isokinetic effect. Journal of Thermal Analysis and Calorimetry, 74(3), 953-973. doi:10.1023/b:jtan.0000011027.59338.54 es_ES
dc.description.references Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520(1-2), 1-19. doi:10.1016/j.tca.2011.03.034 es_ES
dc.description.references Criado, J. M., & Ortega, A. (1987). Non-isothermal crystallization kinetics of metal glasses: simultaneous determination of both the activation energy and the exponent n of the JMA kinetic law. Acta Metallurgica, 35(7), 1715-1721. doi:10.1016/0001-6160(87)90117-9 es_ES
dc.description.references Criado, J. M., & Ortega, A. (1986). Non-isothermal transformation kinetics: Remarks on the Kissinger method. Journal of Non-Crystalline Solids, 87(3), 302-311. doi:10.1016/s0022-3093(86)80004-7 es_ES
dc.description.references Farjas, J., Butchosa, N., & Roura, P. (2010). A simple kinetic method for the determination of the reaction model from non-isothermal experiments. Journal of Thermal Analysis and Calorimetry, 102(2), 615-625. doi:10.1007/s10973-010-0737-5 es_ES
dc.description.references Mamleev, V., Bourbigot, S., Le Bras, M., & Lefebvre, J. (2004). Three model-free methods for calculation of activation energy in TG. Journal of Thermal Analysis and Calorimetry, 78(3), 1009-1027. doi:10.1007/s10973-005-0467-0 es_ES
dc.description.references Nikolaidis, A., & Achilias, D. (2018). Thermal Degradation Kinetics and Viscoelastic Behavior of Poly(Methyl Methacrylate)/Organomodified Montmorillonite Nanocomposites Prepared via In Situ Bulk Radical Polymerization. Polymers, 10(5), 491. doi:10.3390/polym10050491 es_ES
dc.description.references Flynn, J. H. (1991). A general differential technique for the determination of parameters for d(α)/dt=f(α)A exp (−E/RT). Journal of Thermal Analysis, 37(2), 293-305. doi:10.1007/bf02055932 es_ES
dc.description.references Sbirrazzuoli, N., Vincent, L., Mija, A., & Guigo, N. (2009). Integral, differential and advanced isoconversional methods. Chemometrics and Intelligent Laboratory Systems, 96(2), 219-226. doi:10.1016/j.chemolab.2009.02.002 es_ES
dc.description.references Flynn, J. H. (1983). The isoconversional method for determination of energy of activation at constant heating rates. Journal of Thermal Analysis, 27(1), 95-102. doi:10.1007/bf01907325 es_ES
dc.description.references Venkatesh, M., Ravi, P., & Tewari, S. P. (2013). Isoconversional Kinetic Analysis of Decomposition of Nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa Method. The Journal of Physical Chemistry A, 117(40), 10162-10169. doi:10.1021/jp407526r es_ES
dc.description.references Huang, F.-Y. (2012). Thermal Properties and Thermal Degradation of Cellulose Tri-Stearate (CTs). Polymers, 4(2), 1012-1024. doi:10.3390/polym4021012 es_ES
dc.description.references Pérez-Maqueda, L. A., Criado, J. M., Gotor, F. J., & Málek, J. (2002). Advantages of Combined Kinetic Analysis of Experimental Data Obtained under Any Heating Profile. The Journal of Physical Chemistry A, 106(12), 2862-2868. doi:10.1021/jp012246b es_ES
dc.description.references García-Garrido, C., Pérez- Maqueda, L. A., Criado, J. M., & Sánchez-Jiménez, P. E. (2018). Combined kinetic analysis of multistep processes of thermal decomposition of polydimethylsiloxane silicone. Polymer, 153, 558-564. doi:10.1016/j.polymer.2018.08.045 es_ES
dc.description.references Yan, Q.-L., Zeman, S., Sánchez Jiménez, P. E., Zhao, F.-Q., Pérez-Maqueda, L. A., & Málek, J. (2014). The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis. Journal of Hazardous Materials, 271, 185-195. doi:10.1016/j.jhazmat.2014.02.019 es_ES
dc.description.references Yahyaoui, R., Jimenez, P. E. S., Maqueda, L. A. P., Nahdi, K., & Luque, J. M. C. (2018). Synthesis, characterization and combined kinetic analysis of thermal decomposition of hydrotalcite (Mg6Al2(OH)16CO3·4H2O). Thermochimica Acta, 667, 177-184. doi:10.1016/j.tca.2018.07.025 es_ES
dc.description.references Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2011). Constant rate thermal analysis for thermal stability studies of polymers. Polymer Degradation and Stability, 96(5), 974-981. doi:10.1016/j.polymdegradstab.2011.01.027 es_ES
dc.description.references Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). Generalized Kinetic Master Plots for the Thermal Degradation of Polymers Following a Random Scission Mechanism. The Journal of Physical Chemistry A, 114(30), 7868-7876. doi:10.1021/jp103171h es_ES
dc.description.references Málek, J., Koga, N., Pérez-Maqueda, L. A., & Criado, J. M. (2013). The Ozawa’s generalized time concept and YZ-master plots as a convenient tool for kinetic analysis of complex processes. Journal of Thermal Analysis and Calorimetry, 113(3), 1437-1446. doi:10.1007/s10973-013-2939-0 es_ES
dc.description.references Pérez-Maqueda, L. A., Ortega, A., & Criado, J. M. (1996). The use of master plots for discriminating the kinetic model of solid state reactions from a single constant-rate thermal analysis (CRTA) experiment. Thermochimica Acta, 277, 165-173. doi:10.1016/0040-6031(95)02746-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem