Scaffaro, R., Botta, L., & Di Benedetto, G. (2012). Physical properties of virgin-recycled ABS blends: Effect of post-consumer content and of reprocessing cycles. European Polymer Journal, 48(3), 637-648. doi:10.1016/j.eurpolymj.2011.12.018
Tiganis, B. ., Burn, L. ., Davis, P., & Hill, A. . (2002). Thermal degradation of acrylonitrile–butadiene–styrene (ABS) blends. Polymer Degradation and Stability, 76(3), 425-434. doi:10.1016/s0141-3910(02)00045-9
Niemczyk, A., Dziubek, K., Sacher-Majewska, B., Czaja, K., Czech-Polak, J., Oliwa, R., … Szołyga, M. (2018). Thermal Stability and Flame Retardancy of Polypropylene Composites Containing Siloxane-Silsesquioxane Resins. Polymers, 10(9), 1019. doi:10.3390/polym10091019
[+]
Scaffaro, R., Botta, L., & Di Benedetto, G. (2012). Physical properties of virgin-recycled ABS blends: Effect of post-consumer content and of reprocessing cycles. European Polymer Journal, 48(3), 637-648. doi:10.1016/j.eurpolymj.2011.12.018
Tiganis, B. ., Burn, L. ., Davis, P., & Hill, A. . (2002). Thermal degradation of acrylonitrile–butadiene–styrene (ABS) blends. Polymer Degradation and Stability, 76(3), 425-434. doi:10.1016/s0141-3910(02)00045-9
Niemczyk, A., Dziubek, K., Sacher-Majewska, B., Czaja, K., Czech-Polak, J., Oliwa, R., … Szołyga, M. (2018). Thermal Stability and Flame Retardancy of Polypropylene Composites Containing Siloxane-Silsesquioxane Resins. Polymers, 10(9), 1019. doi:10.3390/polym10091019
Chieng, B., Ibrahim, N., Yunus, W., & Hussein, M. (2013). Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers, 6(1), 93-104. doi:10.3390/polym6010093
Zhang, X., Wu, Y., Chen, X., Wen, H., & Xiao, S. (2017). Theoretical Study on Decomposition Mechanism of Insulating Epoxy Resin Cured by Anhydride. Polymers, 9(12), 341. doi:10.3390/polym9080341
Ramesh, V., Biswal, M., Mohanty, S., & Nayak, S. K. (2014). Compatibilization effect of EVA-g-MAH on mechanical, morphological and rheological properties of recycled PC/ABS blend. Materials Express, 4(6), 499-507. doi:10.1166/mex.2014.1198
Kuram, E., Ozcelik, B., Yilmaz, F., Timur, G., & Sahin, Z. M. (2014). The effect of recycling number on the mechanical, chemical, thermal, and rheological properties of PBT/PC/ABS ternary blends: With and without glass-fiber. Polymer Composites, 35(10), 2074-2084. doi:10.1002/pc.22869
Balart, R., López, J., García, D., & Dolores Salvador, M. (2005). Recycling of ABS and PC from electrical and electronic waste. Effect of miscibility and previous degradation on final performance of industrial blends. European Polymer Journal, 41(9), 2150-2160. doi:10.1016/j.eurpolymj.2005.04.001
Khatri, B., Lappe, K., Habedank, M., Mueller, T., Megnin, C., & Hanemann, T. (2018). Fused Deposition Modeling of ABS-Barium Titanate Composites: A Simple Route towards Tailored Dielectric Devices. Polymers, 10(6), 666. doi:10.3390/polym10060666
Hart, K. R., & Wetzel, E. D. (2017). Fracture behavior of additively manufactured acrylonitrile butadiene styrene (ABS) materials. Engineering Fracture Mechanics, 177, 1-13. doi:10.1016/j.engfracmech.2017.03.028
Ramirez, N. V., & Sanchez-Soto, M. (2012). Effects of poss nanoparticles on ABS-g
-Ma thermo oxidation resistance. Polymer Composites, 33(10), 1707-1718. doi:10.1002/pc.22304
Duh, Y.-S., Ho, T.-C., Chen, J.-R., & Kao, C.-S. (2010). Study on Exothermic Oxidation of Acrylonitrile-butadiene-styrene (ABS) Resin Powder with Application to ABS Processing Safety. Polymers, 2(3), 174-187. doi:10.3390/polym2030174
Polli, H., Pontes, L. A. M., Araujo, A. S., Barros, J. M. F., & Fernandes, V. J. (2009). Degradation behavior and kinetic study of ABS polymer. Journal of Thermal Analysis and Calorimetry, 95(1), 131-134. doi:10.1007/s10973-006-7781-1
Suzuki, M., & Wilkie, C. A. (1995). The thermal degradation of acrylonitrile-butadiene-styrene terpolymei as studied by TGA/FTIR. Polymer Degradation and Stability, 47(2), 217-221. doi:10.1016/0141-3910(94)00122-o
Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polymer Degradation and Stability, 95(5), 733-739. doi:10.1016/j.polymdegradstab.2010.02.017
Perejón, A., Sánchez-Jiménez, P. E., Gil-González, E., Pérez-Maqueda, L. A., & Criado, J. M. (2013). Pyrolysis kinetics of ethylene–propylene (EPM) and ethylene–propylene–diene (EPDM). Polymer Degradation and Stability, 98(9), 1571-1577. doi:10.1016/j.polymdegradstab.2013.06.029
Carrasco, F., Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Perejón, A., Santana, O. O., & Maspoch, M. L. (2013). Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission. Polymer Testing, 32(5), 937-945. doi:10.1016/j.polymertesting.2013.04.013
Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Perejón, A., García-Garrido, C., Criado, J. M., & Benítez-Guerrero, M. (2014). Scission kinetic model for the prediction of polymer pyrolysis curves from chain structure. Polymer Testing, 37, 1-5. doi:10.1016/j.polymertesting.2014.04.004
Di Cortemiglia, M. P. L., Camino, G., Costa, L., & Guaita, M. (1985). Thermal degradation of ABS. Thermochimica Acta, 93, 187-190. doi:10.1016/0040-6031(85)85048-6
Day, M., Cooney, J. D., & MacKinnon, M. (1995). Degradation of contaminated plastics: a kinetic study. Polymer Degradation and Stability, 48(3), 341-349. doi:10.1016/0141-3910(95)00088-4
Balart, R., Sánchez, L., López, J., & Jiménez, A. (2006). Kinetic analysis of thermal degradation of recycled polycarbonate/acrylonitrile–butadiene–styrene mixtures from waste electric and electronic equipment. Polymer Degradation and Stability, 91(3), 527-534. doi:10.1016/j.polymdegradstab.2005.01.055
Stanko, M., & Stommel, M. (2018). Kinetic Prediction of Fast Curing Polyurethane Resins by Model-Free Isoconversional Methods. Polymers, 10(7), 698. doi:10.3390/polym10070698
Starink, M. . (2003). The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica Acta, 404(1-2), 163-176. doi:10.1016/s0040-6031(03)00144-8
Lyon, R. E. (1997). An integral method of nonisothermal kinetic analysis. Thermochimica Acta, 297(1-2), 117-124. doi:10.1016/s0040-6031(97)00158-5
Shao, J., Wang, J., Long, M., Li, J., & Ma, Y. (2017). 5000 h Multi-Factor Accelerated Aging Test of FRP Made Transmission Tower: Characterization, Thermal Decomposition and Reaction Kinetics Study. Polymers, 9(12), 170. doi:10.3390/polym9050170
Doyle, C. D. (1961). Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 5(15), 285-292. doi:10.1002/app.1961.070051506
Doyle, C. D. (1962). Estimating isothermal life from thermogravimetric data. Journal of Applied Polymer Science, 6(24), 639-642. doi:10.1002/app.1962.070062406
Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4(5), 323-328. doi:10.1002/pol.1966.110040504
Ozawa, T. (1965). A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society of Japan, 38(11), 1881-1886. doi:10.1246/bcsj.38.1881
Zhao, S. F., Zhang, G. P., Sun, R., & Wong, C. P. (2014). Curing kinetics, mechanism and chemorheological behavior of methanol etherified amino/novolac epoxy systems. Express Polymer Letters, 8(2), 95-106. doi:10.3144/expresspolymlett.2014.12
Kissinger, H. E. (1957). Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 29(11), 1702-1706. doi:10.1021/ac60131a045
Pérez-Maqueda, L. A., Criado, J. M., & Sánchez-Jiménez, P. E. (2006). Combined Kinetic Analysis of Solid-State Reactions: A Powerful Tool for the Simultaneous Determination of Kinetic Parameters and the Kinetic Model without Previous Assumptions on the Reaction Mechanism. The Journal of Physical Chemistry A, 110(45), 12456-12462. doi:10.1021/jp064792g
Šesták, J., & Berggren, G. (1971). Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochimica Acta, 3(1), 1-12. doi:10.1016/0040-6031(71)85051-7
Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2009). Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polymer Degradation and Stability, 94(11), 2079-2085. doi:10.1016/j.polymdegradstab.2009.07.006
Senum, G. I., & Yang, R. T. (1977). Rational approximations of the integral of the Arrhenius function. Journal of Thermal Analysis, 11(3), 445-447. doi:10.1007/bf01903696
Pérez-Maqueda, L. A., & Criado, J. M. (2000). Journal of Thermal Analysis and Calorimetry, 60(3), 909-915. doi:10.1023/a:1010115926340
Flynn, J. H. (1997). The ‘Temperature Integral’ — Its use and abuse. Thermochimica Acta, 300(1-2), 83-92. doi:10.1016/s0040-6031(97)00046-4
Mianowski, A. (2003). The kissinger law and isokinetic effect. Journal of Thermal Analysis and Calorimetry, 74(3), 953-973. doi:10.1023/b:jtan.0000011027.59338.54
Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520(1-2), 1-19. doi:10.1016/j.tca.2011.03.034
Criado, J. M., & Ortega, A. (1987). Non-isothermal crystallization kinetics of metal glasses: simultaneous determination of both the activation energy and the exponent n of the JMA kinetic law. Acta Metallurgica, 35(7), 1715-1721. doi:10.1016/0001-6160(87)90117-9
Criado, J. M., & Ortega, A. (1986). Non-isothermal transformation kinetics: Remarks on the Kissinger method. Journal of Non-Crystalline Solids, 87(3), 302-311. doi:10.1016/s0022-3093(86)80004-7
Farjas, J., Butchosa, N., & Roura, P. (2010). A simple kinetic method for the determination of the reaction model from non-isothermal experiments. Journal of Thermal Analysis and Calorimetry, 102(2), 615-625. doi:10.1007/s10973-010-0737-5
Mamleev, V., Bourbigot, S., Le Bras, M., & Lefebvre, J. (2004). Three model-free methods for calculation of activation energy in TG. Journal of Thermal Analysis and Calorimetry, 78(3), 1009-1027. doi:10.1007/s10973-005-0467-0
Nikolaidis, A., & Achilias, D. (2018). Thermal Degradation Kinetics and Viscoelastic Behavior of Poly(Methyl Methacrylate)/Organomodified Montmorillonite Nanocomposites Prepared via In Situ Bulk Radical Polymerization. Polymers, 10(5), 491. doi:10.3390/polym10050491
Flynn, J. H. (1991). A general differential technique for the determination of parameters for d(α)/dt=f(α)A exp (−E/RT). Journal of Thermal Analysis, 37(2), 293-305. doi:10.1007/bf02055932
Sbirrazzuoli, N., Vincent, L., Mija, A., & Guigo, N. (2009). Integral, differential and advanced isoconversional methods. Chemometrics and Intelligent Laboratory Systems, 96(2), 219-226. doi:10.1016/j.chemolab.2009.02.002
Flynn, J. H. (1983). The isoconversional method for determination of energy of activation at constant heating rates. Journal of Thermal Analysis, 27(1), 95-102. doi:10.1007/bf01907325
Venkatesh, M., Ravi, P., & Tewari, S. P. (2013). Isoconversional Kinetic Analysis of Decomposition of Nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa Method. The Journal of Physical Chemistry A, 117(40), 10162-10169. doi:10.1021/jp407526r
Huang, F.-Y. (2012). Thermal Properties and Thermal Degradation of Cellulose Tri-Stearate (CTs). Polymers, 4(2), 1012-1024. doi:10.3390/polym4021012
Pérez-Maqueda, L. A., Criado, J. M., Gotor, F. J., & Málek, J. (2002). Advantages of Combined Kinetic Analysis of Experimental Data Obtained under Any Heating Profile. The Journal of Physical Chemistry A, 106(12), 2862-2868. doi:10.1021/jp012246b
García-Garrido, C., Pérez- Maqueda, L. A., Criado, J. M., & Sánchez-Jiménez, P. E. (2018). Combined kinetic analysis of multistep processes of thermal decomposition of polydimethylsiloxane silicone. Polymer, 153, 558-564. doi:10.1016/j.polymer.2018.08.045
Yan, Q.-L., Zeman, S., Sánchez Jiménez, P. E., Zhao, F.-Q., Pérez-Maqueda, L. A., & Málek, J. (2014). The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis. Journal of Hazardous Materials, 271, 185-195. doi:10.1016/j.jhazmat.2014.02.019
Yahyaoui, R., Jimenez, P. E. S., Maqueda, L. A. P., Nahdi, K., & Luque, J. M. C. (2018). Synthesis, characterization and combined kinetic analysis of thermal decomposition of hydrotalcite (Mg6Al2(OH)16CO3·4H2O). Thermochimica Acta, 667, 177-184. doi:10.1016/j.tca.2018.07.025
Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2011). Constant rate thermal analysis for thermal stability studies of polymers. Polymer Degradation and Stability, 96(5), 974-981. doi:10.1016/j.polymdegradstab.2011.01.027
Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). Generalized Kinetic Master Plots for the Thermal Degradation of Polymers Following a Random Scission Mechanism. The Journal of Physical Chemistry A, 114(30), 7868-7876. doi:10.1021/jp103171h
Málek, J., Koga, N., Pérez-Maqueda, L. A., & Criado, J. M. (2013). The Ozawa’s generalized time concept and YZ-master plots as a convenient tool for kinetic analysis of complex processes. Journal of Thermal Analysis and Calorimetry, 113(3), 1437-1446. doi:10.1007/s10973-013-2939-0
Pérez-Maqueda, L. A., Ortega, A., & Criado, J. M. (1996). The use of master plots for discriminating the kinetic model of solid state reactions from a single constant-rate thermal analysis (CRTA) experiment. Thermochimica Acta, 277, 165-173. doi:10.1016/0040-6031(95)02746-7
[-]