- -

Mobility assessment in people with Alzheimer disease using smartphone sensors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mobility assessment in people with Alzheimer disease using smartphone sensors

Mostrar el registro completo del ítem

Serra-Añó, P.; Pedrero, J.; Hurtado-Abellán, J.; Inglés, M.; Espí-López, G.; Lopez Pascual, J. (2019). Mobility assessment in people with Alzheimer disease using smartphone sensors. Journal of NeuroEngineering and Rehabilitation. 16(1). https://doi.org/10.1186/s12984-019-0576-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141431

Ficheros en el ítem

Metadatos del ítem

Título: Mobility assessment in people with Alzheimer disease using smartphone sensors
Autor: Serra-Añó, Pilar Pedrero, J.F. Hurtado-Abellán, J. Inglés, M. Espí-López, G. Lopez Pascual, Juan
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València
Fecha difusión:
Resumen:
[EN] Background Understanding the functional status of people with Alzheimer Disease (AD), both in a single (ST) and cognitive dual task (DT) activities is essential for identifying signs of early-stage neurodegeneration. ...[+]
Palabras clave: Functional mobility , Alzheimer's disease , Android device , Dual-task , Gait
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of NeuroEngineering and Rehabilitation. (issn: 1743-0003 )
DOI: 10.1186/s12984-019-0576-y
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s12984-019-0576-y
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2013-44227-R/ES/METODOLOGIA DE DISEÑO DE SISTEMAS BIOMECATRONICOS. APLICACION AL DESARROLLO DE UN ROBOT PARALELO HIBRIDO PARA DIAGNOSTICO Y REHABILITACION/
Agradecimientos:
This work was funded by the Spanish Government, Secretaria de Estado de Investigacion, Desarrollo e Innovacion, and co-financed by EU FEDER funds (Grant DPI2013-44227-R). The funders had no role in study design, data ...[+]
Tipo: Artículo

References

Association A. 2017 Alzheimer’s disease facts and figures. Alzheimers Dement. 2017;13(4):325–73.

Harrington MG, Chiang J, Pogoda JM, Gomez M, Thomas K, Marion SD, et al. Executive function changes before memory in preclinical Alzheimer’s pathology: a prospective, cross-sectional, case control study. PLoS One. 2013;8(11):e79378.

Buckner RL. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron. 2004;44(1):195–208. [+]
Association A. 2017 Alzheimer’s disease facts and figures. Alzheimers Dement. 2017;13(4):325–73.

Harrington MG, Chiang J, Pogoda JM, Gomez M, Thomas K, Marion SD, et al. Executive function changes before memory in preclinical Alzheimer’s pathology: a prospective, cross-sectional, case control study. PLoS One. 2013;8(11):e79378.

Buckner RL. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron. 2004;44(1):195–208.

Beauchet O, Launay CP, Barden J, Liu-Ambrose T, Chester VL, Szturm T, et al. Association between falls and brain subvolumes: results from a cross-sectional analysis in healthy older adults. Brain Topogr. 2017;30(2):272–80.

Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord Off J Mov Disord Soc. 2008;23(3):329–42.

Verghese J, Wang C, Holtzer R, Lipton R, Xue X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry. 2007;78(9):929–35.

Beauchet O, Annweiler C, Callisaya ML, De Cock A-M, Helbostad JL, Kressig RW, et al. Poor gait performance and prediction of dementia: results from a meta-analysis. J Am Med Dir Assoc. 2016;17(6):482–90.

Rucco R, Agosti V, Jacini F, Sorrentino P, Varriale P, De Stefano M, et al. Spatio-temporal and kinematic gait analysis in patients with frontotemporal dementia and Alzheimer’s disease through 3D motion capture. Gait Posture. 2017;52:312–7.

de Melo Coelho FG, Stella F, de Andrade LP, Barbieri FA, Santos-Galduróz RF, Gobbi S, et al. Gait and risk of falls associated with frontal cognitive functions at different stages of Alzheimer’s disease. Aging Neuropsychol Cogn. 2012;19(5):644–56.

Beauchet O, Allali G, Launay C, Herrmann FR, Annweiler C. Gait variability at fast-pace walking speed: a biomarker of mild cognitive impairment? J Nutr Health Aging. 2013;17(3):235–9.

Ganz DA, Bao Y, Shekelle PG, Rubenstein LZ. Will my patient fall? JAMA. 2007;297(1):77–86.

Egerton T, Danoudis M, Huxham F, Iansek R. Central gait control mechanisms and the stride length - cadence relationship. Gait Posture. 2011;34(2):178–82.

Baddeley AD, Baddeley HA, Bucks RS, Wilcock GK. Attentional control in Alzheimer’s disease. Brain. 2001;124(8):1492–508.

Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. Lancet Neurol. 2007;6(8):734–46.

Coubard OA, Ferrufino L, Boura M, Gripon A, Renaud M, Bherer L. Attentional control in normal aging and Alzheimer’s disease. Neuropsychology. 2011;25(3):353–67.

Ries JD, Echternach JL, Nof L, Gagnon BM. Test-retest reliability and minimal detectable change scores for the timed “up & go” test, the six-minute walk test, and gait speed in people with Alzheimer disease. Phys Ther. 2009;89(6):569–79.

Tamura K, Kocher M, Finer L, Murata N, Stickley C. Reliability of clinically feasible dual-task tests: expanded timed get up and go test as a motor task on young healthy individuals. Gait Posture. 2018;60:22–7.

Muir SW, Speechley M, Wells J, Borrie M, Gopaul K, Montero-Odasso M. Gait assessment in mild cognitive impairment and Alzheimer’s disease: the effect of dual-task challenges across the cognitive spectrum. Gait Posture. 2012;35(1):96–100.

Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–4.

Ansai JH, Andrade LP, Rossi PG, Takahashi AC, Vale FA, Rebelatto JR. Gait, dual task and history of falls in elderly with preserved cognition, mild cognitive impairment, and mild Alzheimer’s disease. Braz J Phys Ther. 2017;21(2):144–51.

Herrero MJ, Blanch J, Peri JM, De Pablo J, Pintor L, Bulbena A. A validation study of the hospital anxiety and depression scale (HADS) in a Spanish population. Gen Hosp Psychiatry. 2003;25(4):277–83.

Bower ES, Wetherell JL, Merz CC, Petkus AJ, Malcarne VL, Lenze EJ. A new measure of fear of falling: psychometric properties of the fear of falling questionnaire revised (FFQ-R). Int Psychogeriatr. 2015;27(7):1121–33.

López-Pascual J, Hurtado AJ, Inglés M, Espí-López G, Serra-Añó P. P 151-reliability of variables measured with an android device during a modified timed up and go test in patients with Alzheimer’s disease. Gait Posture. 2018;65:484.

Nishiguchi S, Yamada M, Nagai K, Mori S, Kajiwara Y, Sonoda T, et al. Reliability and validity of gait analysis by android-based smartphone. Telemed J E Health. 2012;18(4):292–6.

Zijlstra W, Hof AL. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture. 2003;18(2):1–10.

Ribeiro JG, De Castro JT, Freire JL. Using the FFT-DDI method to measure displacements with piezoelectric, resistive and ICP accelerometers. In: Conference and exposition on structural dynamics. Rio de Janeiro: Citeseer; 2003.

Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebust BM. Measures of postural steadiness: differences between healthy young and elderly adults. Biomed Eng IEEE Trans On. 1996;43(9):956–66.

Esser P, Dawes H, Collett J, Howells K. IMU: inertial sensing of vertical CoM movement. J Biomech. 2009;42(10):1578–81.

Gordon KE, Ferris DP, Kuo AD. Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait. Arch Phys Med Rehabil. 2009;90(1):136–44.

Gard SA, Miff SC, Kuo AD. Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Hum Mov Sci. 2004;22(6):597–610.

Weinert-Aplin RA, Twiste M, Jarvis HL, Bennett AN, Baker RJ. Medial-lateral centre of mass displacement and base of support are equally good predictors of metabolic cost in amputee walking. Gait Posture. 2017;51:41–6.

Chen S-H, Lo O-Y, Kay T, Chou L-S. Concurrent phone texting alters crossing behavior and induces gait imbalance during obstacle crossing. Gait Posture. 2018;62:422–5.

Lindemann U, Claus H, Stuber M, Augat P, Muche R, Nikolaus T, et al. Measuring power during the sit-to-stand transfer. Eur J Appl Physiol. 2003;89(5):466–70.

Manckoundia P, Mourey F, Pfitzenmeyer P, Papaxanthis C. Comparison of motor strategies in sit-to-stand and back-to-sit motions between healthy and Alzheimer’s disease elderly subjects. Neuroscience. 2006;137(2):385–92.

Christ BU, Combrinck MI, Thomas KG. Both reaction time and accuracy measures of Intraindividual variability predict cognitive performance in Alzheimer’s disease. Front Hum Neurosci. 2018;12:124–35.

Vienne A, Barrois RP, Buffat S, Ricard D, Vidal P-P. Inertial sensors to assess gait quality in patients with neurological disorders: a systematic review of technical and analytical challenges. Front Psychol. 2017;8:817.

Wang W-H, Chung P-C, Yang G-L, Lin C-W, Hsu Y-L, Pai M-C. An inertial sensor based balance and gait analysis system. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS): Rio de Janeiro: IEEE; 2015. p. 2636–9.

Wüest S, Masse F, Aminian K, Gonzenbach R, De Bruin ED. Reliability and validity of the inertial sensor-based timed “up and go” test in individuals affected by stroke. J Rehabil Res Dev. 2016;53(5):599–610.

Nguyen H, Lebel K, Boissy P, Bogard S, Goubault E, Duval C. Auto detection and segmentation of daily living activities during a timed up and go task in people with Parkinson’s disease using multiple inertial sensors. J Neuroengineering Rehabil. 2017;14(1):26.

Ansai JH, de Andrade LP, Rossi PG, Nakagawa TH, Vale FAC, Rebelatto JR. Differences in timed up and go subtasks between older people with mild cognitive impairment and mild Alzheimer’s disease. Mot Control. 2018;27:1–12.

Eggermont LH, Gavett BE, Volkers KM, Blankevoort CG, Scherder EJ, Jefferson AL, et al. Lower-extremity function in cognitively healthy aging, mild cognitive impairment, and Alzheimer’s disease. Arch Phys Med Rehabil. 2010;91(4):584–8.

Leandri M, Cammisuli S, Cammarata S, Baratto L, Campbell J, Simonini M, et al. Balance features in Alzheimer’s disease and amnestic mild cognitive impairment. J Alzheimers Dis. 2009;16(1):113–20.

Nakamura T, Meguro K, Yamazaki H, Okuzumi H, Tanaka A, Horikawa A, et al. Postural and gait disturbance correlated with decreased frontal cerebral blood flow in Alzheimer disease. Alzheimer Dis Assoc Disord. 1997;11(3):132–9.

Cavagna GA, Margaria R. Mechanics of walking. J Appl Physiol. 1966;21(1):271–8.

Ganea R, Paraschiv-Ionescu A, Büla C, Rochat S, Aminian K. Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Med Eng Phys. 2011;33(9):1086–93.

Cameron DM, Bohannon RW, Garrett GE, Owen SV, Cameron DA. Physical impairments related to kinetic energy during sit-to-stand and curb-climbing following stroke. Clin Biomech. 2003;18(4):332–40.

McGuinness B, Barrett SL, Craig D, Lawson J, Passmore AP. Attention deficits in Alzheimer’s disease and vascular dementia. J Neurol Neurosurg Psychiatry. 2010;81(2):157–9.

Phillips M, Rogers P, Haworth J, Bayer A, Tales A. Intra-individual reaction time variability in mild cognitive impairment and Alzheimer’s disease: gender, processing load and speed factors. PLoS One. 2013;8(6):e65712.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem