Mostrar el registro sencillo del ítem
dc.contributor.author | Casellas, J. | es_ES |
dc.contributor.author | Ibañez Escriche, Noelia | es_ES |
dc.contributor.author | Varona, L. | es_ES |
dc.contributor.author | Rosas, J.P. | es_ES |
dc.contributor.author | Noguera, J.L. | es_ES |
dc.date.accessioned | 2020-04-24T07:13:37Z | |
dc.date.available | 2020-04-24T07:13:37Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.issn | 0021-8812 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141441 | |
dc.description.abstract | [EN] Individual-specific hidden inbreeding depression load (IDL) can be accounted for in livestock populations by appropriate best linear unbiased prediction approaches. This genetic effect has a recessive pattern and reveals when inherited in terms of identity-by-descent. Nevertheless, IDL inherits as a pure additive genetic background and can be selected using standard breeding values. The main target of this research was to evaluate IDL for litter size in 2 Iberian pig varieties (Entrepelado and Retinto) from a commercial breeding-stock. Analyses were performed on the total number of piglets born (both alive and dead) and used data from 3,200 (8.02 ± 0.04 piglets/litter) Entrepelado and 4,744 Retinto litters (8.40 ± 0.03 piglets/litter). Almost 50% of Entrepelado sows were inbred (1.7% to 25.0%), whereas this percentage reduced to 37.4% in the Retinto variety (0.2% to 25.0%). The analytical model was solved by Bayesian inference and accounted for 2 systematic effects (sow age and breed/variety of the artificial insemination boar), 2 permanent environmental effects (herd-year-season and sow), and 2 genetic effects (IDL and infinitesimal additive). In terms of posterior means (PM), additive genetic and IDL variances were similar in the Entrepelado variety (PM, 0.68 vs. 0.76 piglets2, respectively) and their 95% credibility intervals (95CI) overlapped, although without including zero (0.38 to 0.94 vs. 0.15 to 1.31 piglets2, respectively). The same pattern revealed in the Retinto variety, with IDL variance (PM, 0.41 piglets2; 95CI, 0.07 to 0.88 piglets2) slightly larger than the additive genetic variance (PM, 0.37 piglets2; 95CI, 0.16 to 0.59 piglets2). The relevance of IDL was also checked by a Bayes factor and the deviance information criterion, the model including this effect being clearly favored in both cases. Although the analysis assumed null genetic covariance between IDL and infinitesimal additive effects, a moderate negative correlation (¿0.31) was suggested when plotting the PM of breeding values in the Entrepelado variety; a negative genetic trend for IDL was also revealed in this Iberian pig variety (¿0.25 piglets for 100% inbred offspring of individuals born in 2014), whereas no trend was detected in Retinto breeding-stock. Those were the first estimates of IDL in a commercial livestock population, they giving evidence of a relevant genetic background with potential consequences on the reproductive performance of Iberian sows. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge the company INGA FOOD SA (Almendralejo, Spain) and its technicians (E. Magallon, M. J. Garcia-Santana, L. Munoz, P. Diaz, D. Iniesta, and M. Ramos), as well as S. Negro (IRTA), for their cooperation and technical support. This research was partially funded by grants CGL2016-80155-R and IDI-20170304 from Spain's Ministry of Science, Innovation and Universities. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Society of Animal Science | es_ES |
dc.relation.ispartof | Journal of Animal Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Best linear unbiased prediction | es_ES |
dc.subject | Iberian pig | es_ES |
dc.subject | Identity-by-descent | es_ES |
dc.subject | Inbreeding depression | es_ES |
dc.subject | Total number born | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | Inbreeding depression load for litter size in Entrepelado and Retinto Iberian pig varieties | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/jas/skz084 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2016-80155-R/ES/ANALISIS ¿OMICO¿ DE CARACTERES REPRODUCTIVOS EN UN CRUCE DIAELICO ENTRE TRES ESTIRPES DE CERDO IBERICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//IDI-20170304/ES/Mejora de la eficiencia productiva y de la calidad de la carne en el programa piramidal de mejora genética de ibérico 'Castúa/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Casellas, J.; Ibañez Escriche, N.; Varona, L.; Rosas, J.; Noguera, J. (2019). Inbreeding depression load for litter size in Entrepelado and Retinto Iberian pig varieties. Journal of Animal Science. 97(5):1979-1986. https://doi.org/10.1093/jas/skz084 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/jas/skz084 | es_ES |
dc.description.upvformatpinicio | 1979 | es_ES |
dc.description.upvformatpfin | 1986 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 97 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\380799 | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Alves, E., Fernández, A., Barragán, C., Ovilo, C., Rodríguez, C., & Silió, L. (2006). Inference of hidden population substructure of the Iberian pig breed using multilocus microsatellite data. Spanish Journal of Agricultural Research, 4(1), 37. doi:10.5424/sjar/2006041-176 | es_ES |
dc.description.references | CABALLERO, A., & TORO, M. A. (2000). Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genetical Research, 75(3), 331-343. doi:10.1017/s0016672399004449 | es_ES |
dc.description.references | Casellas, J. (2017). On individual-specific prediction of hidden inbreeding depression load. Journal of Animal Breeding and Genetics, 135(1), 37-44. doi:10.1111/jbg.12308 | es_ES |
dc.description.references | CASELLAS, J., VARONA, L., IBÁÑEZ-ESCRICHE, N., QUINTANILLA, R., & NOGUERA, J. L. (2008). Skew distribution of founder-specific inbreeding depression effects on the longevity of Landrace sows. Genetics Research, 90(6), 499-508. doi:10.1017/s0016672308009907 | es_ES |
dc.description.references | Charlesworth, D., & Willis, J. H. (2009). The genetics of inbreeding depression. Nature Reviews Genetics, 10(11), 783-796. doi:10.1038/nrg2664 | es_ES |
dc.description.references | Dekkers, J. C. M. (1992). Asymptotic response to selection on best linear unbiased predictors of breeding values. Animal Science, 54(3), 351-360. doi:10.1017/s0003356100020808 | es_ES |
dc.description.references | Esteve-Codina, A., Kofler, R., Himmelbauer, H., Ferretti, L., Vivancos, A. P., Groenen, M. A. M., … Pérez-Enciso, M. (2011). Partial short-read sequencing of a highly inbred Iberian pig and genomics inference thereof. Heredity, 107(3), 256-264. doi:10.1038/hdy.2011.13 | es_ES |
dc.description.references | Fabuel, E., Barragán, C., Silió, L., Rodríguez, M. C., & Toro, M. A. (2004). Analysis of genetic diversity and conservation priorities in Iberian pigs based on microsatellite markers. Heredity, 93(1), 104-113. doi:10.1038/sj.hdy.6800488 | es_ES |
dc.description.references | Fernández, E. N., Legarra, A., Martínez, R., Sánchez, J. P., & Baselga, M. (2017). Pedigree-based estimation of covariance between dominance deviations and additive genetic effects in closed rabbit lines considering inbreeding and using a computationally simpler equivalent model. Journal of Animal Breeding and Genetics, 134(3), 184-195. doi:10.1111/jbg.12267 | es_ES |
dc.description.references | Fuerst, C., & Sölkner, J. (1994). Additive and Nonadditive Genetic Variances for Milk Yield, Fertility, and Lifetime Performance Traits of Dairy Cattle. Journal of Dairy Science, 77(4), 1114-1125. doi:10.3168/jds.s0022-0302(94)77047-8 | es_ES |
dc.description.references | García-Cortés, L. A., Martínez-Ávila, J. C., & Toro, M. A. (2010). Fine decomposition of the inbreeding and the coancestry coefficients by using the tabular method. Conservation Genetics, 11(5), 1945-1952. doi:10.1007/s10592-010-0084-x | es_ES |
dc.description.references | Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-Based Approaches to Calculating Marginal Densities. Journal of the American Statistical Association, 85(410), 398-409. doi:10.1080/01621459.1990.10476213 | es_ES |
dc.description.references | Gulisija, D., Gianola, D., Weigel, K. A., & Toro, M. A. (2006). Between-founder heterogeneity in inbreeding depression for production in Jersey cows. Livestock Science, 104(3), 244-253. doi:10.1016/j.livsci.2006.04.007 | es_ES |
dc.description.references | Hinrichs, D., Meuwissen, T. H. E., Ødegard, J., Holt, M., Vangen, O., & Woolliams, J. A. (2007). Analysis of inbreeding depression in the first litter size of mice in a long-term selection experiment with respect to the age of the inbreeding. Heredity, 99(1), 81-88. doi:10.1038/sj.hdy.6800968 | es_ES |
dc.description.references | Hoeschele, I., & Vollema, A. R. (1993). Estimation of variance components with dominance and inbreeding in dairy cattle. Journal of Animal Breeding and Genetics, 110(1-6), 93-104. doi:10.1111/j.1439-0388.1993.tb00720.x | es_ES |
dc.description.references | Ibáñez-Escriche, N., Varona, L., Magallón, E., & Noguera, J. L. (2014). Crossbreeding effects on pig growth and carcass traits from two Iberian strains. Animal, 8(10), 1569-1576. doi:10.1017/s1751731114001712 | es_ES |
dc.description.references | Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. doi:10.1080/01621459.1995.10476572 | es_ES |
dc.description.references | Legarra, A., & Vitezica, Z. G. (2015). Genetic evaluation with major genes and polygenic inheritance when some animals are not genotyped using gene content multiple-trait BLUP. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0165-x | es_ES |
dc.description.references | Leroy, G. (2014). Inbreeding depression in livestock species: review and meta-analysis. Animal Genetics, 45(5), 618-628. doi:10.1111/age.12178 | es_ES |
dc.description.references | Martınez, A. M., Delgado, J. V., Rodero, A., & Vega-Pla, J. L. (2000). Genetic structure of the Iberian pig breed using microsatellites. Animal Genetics, 31(5), 295-301. doi:10.1046/j.1365-2052.2000.00645.x | es_ES |
dc.description.references | Nagy, I., Gorjanc, G., Curik, I., Farkas, J., Kiszlinger, H., & Szendrő, Z. (2012). The contribution of dominance and inbreeding depression in estimating variance components for litter size in Pannon White rabbits. Journal of Animal Breeding and Genetics, 130(4), 303-311. doi:10.1111/jbg.12022 | es_ES |
dc.description.references | Ober, C., Hyslop, T., & Hauck, W. W. (1999). Inbreeding Effects on Fertility in Humans: Evidence for Reproductive Compensation. The American Journal of Human Genetics, 64(1), 225-231. doi:10.1086/302198 | es_ES |
dc.description.references | Perez-Enciso, M., & Gianola, D. (1992). Estimates of genetic parameters for litter size in six strains of Iberian pigs. Livestock Production Science, 32(3), 283-293. doi:10.1016/s0301-6226(12)80007-8 | es_ES |
dc.description.references | Pujol, B., Zhou, S.-R., Sanchez Vilas, J., & Pannell, J. R. (2009). Reduced inbreeding depression after species range expansion. Proceedings of the National Academy of Sciences, 106(36), 15379-15383. doi:10.1073/pnas.0902257106 | es_ES |
dc.description.references | Quaas, R. L. (1976). Computing the Diagonal Elements and Inverse of a Large Numerator Relationship Matrix. Biometrics, 32(4), 949. doi:10.2307/2529279 | es_ES |
dc.description.references | Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W., & Hanski, I. (1998). Inbreeding and extinction in a butterfly metapopulation. Nature, 392(6675), 491-494. doi:10.1038/33136 | es_ES |
dc.description.references | Saura, M., Fernández, A., Rodríguez, M. C., Toro, M. A., Barragán, C., Fernández, A. I., & Villanueva, B. (2013). Genome-Wide Estimates of Coancestry and Inbreeding in a Closed Herd of Ancient Iberian Pigs. PLoS ONE, 8(10), e78314. doi:10.1371/journal.pone.0078314 | es_ES |
dc.description.references | Saura, M., Fernández, A., Varona, L., Fernández, A. I., de Cara, M., Barragán, C., & Villanueva, B. (2015). Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution, 47(1), 1. doi:10.1186/s12711-014-0081-5 | es_ES |
dc.description.references | Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583-639. doi:10.1111/1467-9868.00353 | es_ES |
dc.description.references | Varona, L., Legarra, A., Herring, W., & Vitezica, Z. G. (2018). Genomic selection models for directional dominance: an example for litter size in pigs. Genetics Selection Evolution, 50(1). doi:10.1186/s12711-018-0374-1 | es_ES |
dc.description.references | Wang, C., Rutledge, J., & Gianola, D. (1994). Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs. Genetics Selection Evolution, 26(2), 91. doi:10.1186/1297-9686-26-2-91 | es_ES |