- -

Inbreeding depression load for litter size in Entrepelado and Retinto Iberian pig varieties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Inbreeding depression load for litter size in Entrepelado and Retinto Iberian pig varieties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casellas, J. es_ES
dc.contributor.author Ibañez Escriche, Noelia es_ES
dc.contributor.author Varona, L. es_ES
dc.contributor.author Rosas, J.P. es_ES
dc.contributor.author Noguera, J.L. es_ES
dc.date.accessioned 2020-04-24T07:13:37Z
dc.date.available 2020-04-24T07:13:37Z
dc.date.issued 2019 es_ES
dc.identifier.issn 0021-8812 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141441
dc.description.abstract [EN] Individual-specific hidden inbreeding depression load (IDL) can be accounted for in livestock populations by appropriate best linear unbiased prediction approaches. This genetic effect has a recessive pattern and reveals when inherited in terms of identity-by-descent. Nevertheless, IDL inherits as a pure additive genetic background and can be selected using standard breeding values. The main target of this research was to evaluate IDL for litter size in 2 Iberian pig varieties (Entrepelado and Retinto) from a commercial breeding-stock. Analyses were performed on the total number of piglets born (both alive and dead) and used data from 3,200 (8.02 ± 0.04 piglets/litter) Entrepelado and 4,744 Retinto litters (8.40 ± 0.03 piglets/litter). Almost 50% of Entrepelado sows were inbred (1.7% to 25.0%), whereas this percentage reduced to 37.4% in the Retinto variety (0.2% to 25.0%). The analytical model was solved by Bayesian inference and accounted for 2 systematic effects (sow age and breed/variety of the artificial insemination boar), 2 permanent environmental effects (herd-year-season and sow), and 2 genetic effects (IDL and infinitesimal additive). In terms of posterior means (PM), additive genetic and IDL variances were similar in the Entrepelado variety (PM, 0.68 vs. 0.76 piglets2, respectively) and their 95% credibility intervals (95CI) overlapped, although without including zero (0.38 to 0.94 vs. 0.15 to 1.31 piglets2, respectively). The same pattern revealed in the Retinto variety, with IDL variance (PM, 0.41 piglets2; 95CI, 0.07 to 0.88 piglets2) slightly larger than the additive genetic variance (PM, 0.37 piglets2; 95CI, 0.16 to 0.59 piglets2). The relevance of IDL was also checked by a Bayes factor and the deviance information criterion, the model including this effect being clearly favored in both cases. Although the analysis assumed null genetic covariance between IDL and infinitesimal additive effects, a moderate negative correlation (¿0.31) was suggested when plotting the PM of breeding values in the Entrepelado variety; a negative genetic trend for IDL was also revealed in this Iberian pig variety (¿0.25 piglets for 100% inbred offspring of individuals born in 2014), whereas no trend was detected in Retinto breeding-stock. Those were the first estimates of IDL in a commercial livestock population, they giving evidence of a relevant genetic background with potential consequences on the reproductive performance of Iberian sows. es_ES
dc.description.sponsorship The authors gratefully acknowledge the company INGA FOOD SA (Almendralejo, Spain) and its technicians (E. Magallon, M. J. Garcia-Santana, L. Munoz, P. Diaz, D. Iniesta, and M. Ramos), as well as S. Negro (IRTA), for their cooperation and technical support. This research was partially funded by grants CGL2016-80155-R and IDI-20170304 from Spain's Ministry of Science, Innovation and Universities. es_ES
dc.language Inglés es_ES
dc.publisher American Society of Animal Science es_ES
dc.relation.ispartof Journal of Animal Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Best linear unbiased prediction es_ES
dc.subject Iberian pig es_ES
dc.subject Identity-by-descent es_ES
dc.subject Inbreeding depression es_ES
dc.subject Total number born es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Inbreeding depression load for litter size in Entrepelado and Retinto Iberian pig varieties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jas/skz084 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2016-80155-R/ES/ANALISIS ¿OMICO¿ DE CARACTERES REPRODUCTIVOS EN UN CRUCE DIAELICO ENTRE TRES ESTIRPES DE CERDO IBERICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//IDI-20170304/ES/Mejora de la eficiencia productiva y de la calidad de la carne en el programa piramidal de mejora genética de ibérico 'Castúa/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Casellas, J.; Ibañez Escriche, N.; Varona, L.; Rosas, J.; Noguera, J. (2019). Inbreeding depression load for litter size in Entrepelado and Retinto Iberian pig varieties. Journal of Animal Science. 97(5):1979-1986. https://doi.org/10.1093/jas/skz084 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/jas/skz084 es_ES
dc.description.upvformatpinicio 1979 es_ES
dc.description.upvformatpfin 1986 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 97 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\380799 es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Alves, E., Fernández, A., Barragán, C., Ovilo, C., Rodríguez, C., & Silió, L. (2006). Inference of hidden population substructure of the Iberian pig breed using multilocus microsatellite data. Spanish Journal of Agricultural Research, 4(1), 37. doi:10.5424/sjar/2006041-176 es_ES
dc.description.references CABALLERO, A., & TORO, M. A. (2000). Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genetical Research, 75(3), 331-343. doi:10.1017/s0016672399004449 es_ES
dc.description.references Casellas, J. (2017). On individual-specific prediction of hidden inbreeding depression load. Journal of Animal Breeding and Genetics, 135(1), 37-44. doi:10.1111/jbg.12308 es_ES
dc.description.references CASELLAS, J., VARONA, L., IBÁÑEZ-ESCRICHE, N., QUINTANILLA, R., & NOGUERA, J. L. (2008). Skew distribution of founder-specific inbreeding depression effects on the longevity of Landrace sows. Genetics Research, 90(6), 499-508. doi:10.1017/s0016672308009907 es_ES
dc.description.references Charlesworth, D., & Willis, J. H. (2009). The genetics of inbreeding depression. Nature Reviews Genetics, 10(11), 783-796. doi:10.1038/nrg2664 es_ES
dc.description.references Dekkers, J. C. M. (1992). Asymptotic response to selection on best linear unbiased predictors of breeding values. Animal Science, 54(3), 351-360. doi:10.1017/s0003356100020808 es_ES
dc.description.references Esteve-Codina, A., Kofler, R., Himmelbauer, H., Ferretti, L., Vivancos, A. P., Groenen, M. A. M., … Pérez-Enciso, M. (2011). Partial short-read sequencing of a highly inbred Iberian pig and genomics inference thereof. Heredity, 107(3), 256-264. doi:10.1038/hdy.2011.13 es_ES
dc.description.references Fabuel, E., Barragán, C., Silió, L., Rodríguez, M. C., & Toro, M. A. (2004). Analysis of genetic diversity and conservation priorities in Iberian pigs based on microsatellite markers. Heredity, 93(1), 104-113. doi:10.1038/sj.hdy.6800488 es_ES
dc.description.references Fernández, E. N., Legarra, A., Martínez, R., Sánchez, J. P., & Baselga, M. (2017). Pedigree-based estimation of covariance between dominance deviations and additive genetic effects in closed rabbit lines considering inbreeding and using a computationally simpler equivalent model. Journal of Animal Breeding and Genetics, 134(3), 184-195. doi:10.1111/jbg.12267 es_ES
dc.description.references Fuerst, C., & Sölkner, J. (1994). Additive and Nonadditive Genetic Variances for Milk Yield, Fertility, and Lifetime Performance Traits of Dairy Cattle. Journal of Dairy Science, 77(4), 1114-1125. doi:10.3168/jds.s0022-0302(94)77047-8 es_ES
dc.description.references García-Cortés, L. A., Martínez-Ávila, J. C., & Toro, M. A. (2010). Fine decomposition of the inbreeding and the coancestry coefficients by using the tabular method. Conservation Genetics, 11(5), 1945-1952. doi:10.1007/s10592-010-0084-x es_ES
dc.description.references Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-Based Approaches to Calculating Marginal Densities. Journal of the American Statistical Association, 85(410), 398-409. doi:10.1080/01621459.1990.10476213 es_ES
dc.description.references Gulisija, D., Gianola, D., Weigel, K. A., & Toro, M. A. (2006). Between-founder heterogeneity in inbreeding depression for production in Jersey cows. Livestock Science, 104(3), 244-253. doi:10.1016/j.livsci.2006.04.007 es_ES
dc.description.references Hinrichs, D., Meuwissen, T. H. E., Ødegard, J., Holt, M., Vangen, O., & Woolliams, J. A. (2007). Analysis of inbreeding depression in the first litter size of mice in a long-term selection experiment with respect to the age of the inbreeding. Heredity, 99(1), 81-88. doi:10.1038/sj.hdy.6800968 es_ES
dc.description.references Hoeschele, I., & Vollema, A. R. (1993). Estimation of variance components with dominance and inbreeding in dairy cattle. Journal of Animal Breeding and Genetics, 110(1-6), 93-104. doi:10.1111/j.1439-0388.1993.tb00720.x es_ES
dc.description.references Ibáñez-Escriche, N., Varona, L., Magallón, E., & Noguera, J. L. (2014). Crossbreeding effects on pig growth and carcass traits from two Iberian strains. Animal, 8(10), 1569-1576. doi:10.1017/s1751731114001712 es_ES
dc.description.references Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. doi:10.1080/01621459.1995.10476572 es_ES
dc.description.references Legarra, A., & Vitezica, Z. G. (2015). Genetic evaluation with major genes and polygenic inheritance when some animals are not genotyped using gene content multiple-trait BLUP. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0165-x es_ES
dc.description.references Leroy, G. (2014). Inbreeding depression in livestock species: review and meta-analysis. Animal Genetics, 45(5), 618-628. doi:10.1111/age.12178 es_ES
dc.description.references Martınez, A. M., Delgado, J. V., Rodero, A., & Vega-Pla, J. L. (2000). Genetic structure of the Iberian pig breed using microsatellites. Animal Genetics, 31(5), 295-301. doi:10.1046/j.1365-2052.2000.00645.x es_ES
dc.description.references Nagy, I., Gorjanc, G., Curik, I., Farkas, J., Kiszlinger, H., & Szendrő, Z. (2012). The contribution of dominance and inbreeding depression in estimating variance components for litter size in Pannon White rabbits. Journal of Animal Breeding and Genetics, 130(4), 303-311. doi:10.1111/jbg.12022 es_ES
dc.description.references Ober, C., Hyslop, T., & Hauck, W. W. (1999). Inbreeding Effects on Fertility in Humans: Evidence for Reproductive Compensation. The American Journal of Human Genetics, 64(1), 225-231. doi:10.1086/302198 es_ES
dc.description.references Perez-Enciso, M., & Gianola, D. (1992). Estimates of genetic parameters for litter size in six strains of Iberian pigs. Livestock Production Science, 32(3), 283-293. doi:10.1016/s0301-6226(12)80007-8 es_ES
dc.description.references Pujol, B., Zhou, S.-R., Sanchez Vilas, J., & Pannell, J. R. (2009). Reduced inbreeding depression after species range expansion. Proceedings of the National Academy of Sciences, 106(36), 15379-15383. doi:10.1073/pnas.0902257106 es_ES
dc.description.references Quaas, R. L. (1976). Computing the Diagonal Elements and Inverse of a Large Numerator Relationship Matrix. Biometrics, 32(4), 949. doi:10.2307/2529279 es_ES
dc.description.references Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W., & Hanski, I. (1998). Inbreeding and extinction in a butterfly metapopulation. Nature, 392(6675), 491-494. doi:10.1038/33136 es_ES
dc.description.references Saura, M., Fernández, A., Rodríguez, M. C., Toro, M. A., Barragán, C., Fernández, A. I., & Villanueva, B. (2013). Genome-Wide Estimates of Coancestry and Inbreeding in a Closed Herd of Ancient Iberian Pigs. PLoS ONE, 8(10), e78314. doi:10.1371/journal.pone.0078314 es_ES
dc.description.references Saura, M., Fernández, A., Varona, L., Fernández, A. I., de Cara, M., Barragán, C., & Villanueva, B. (2015). Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution, 47(1), 1. doi:10.1186/s12711-014-0081-5 es_ES
dc.description.references Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583-639. doi:10.1111/1467-9868.00353 es_ES
dc.description.references Varona, L., Legarra, A., Herring, W., & Vitezica, Z. G. (2018). Genomic selection models for directional dominance: an example for litter size in pigs. Genetics Selection Evolution, 50(1). doi:10.1186/s12711-018-0374-1 es_ES
dc.description.references Wang, C., Rutledge, J., & Gianola, D. (1994). Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs. Genetics Selection Evolution, 26(2), 91. doi:10.1186/1297-9686-26-2-91 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem