- -

Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bieseki, Lindiane es_ES
dc.contributor.author Simancas Coloma, Raquel es_ES
dc.contributor.author Jorda Moret, Jose Luis es_ES
dc.contributor.author Bereciartua-Pérez, Pablo Javier es_ES
dc.contributor.author Cantin Sanz, Angel es_ES
dc.contributor.author Simancas-Coloma, Jorge es_ES
dc.contributor.author Pergher, Sibele B. es_ES
dc.contributor.author Valencia Valencia, Susana es_ES
dc.contributor.author Rey Garcia, Fernando es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2020-04-24T07:13:42Z
dc.date.available 2020-04-24T07:13:42Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1359-7345 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141443
dc.description.abstract [EN] Here, we present the synthesis and structure determination of the new zeolite ITQ-62. Its structure was determined via ultra-fast electron diffraction tomography and refined using powder XRD data of the calcined material. This new zeolite contains a tridirectional channel system of highly distorted 8-rings, as well as a monodirectional 12-ring channel system. es_ES
dc.description.sponsorship The authors gratefully acknowledge financial support from the Spanish Government (MAT2015-71842-P and MAT2015-71261-R MINECO/FEDER and Severo Ochoa SEV-2016-0683). The authors thank ALBA Light Source for beam allocation at the beamline MSPD, and specially thank the Electron Microscopy Service of the Universitat Politecnica de Valencia. Finally, the authors thank Dr Alejandro Vidal and Dr Teresa Blasco for helping in the NMR data discussion. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7cc09240g es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71842-P/ES/SINTESIS Y CARACTERIZACION AVANZADA DE NUEVOS MATERIALES ZEOLITICOS Y APLICACIONES EN ADSORCION, MEDIOAMBIENTE Y EN LA CONSERVACION DE ALIMENTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71261-R/ES/DISEÑO RACIONAL DE MATERIALES ZEOLITICOS CON CENTROS METALICOS PARA SU APLICACION EN PROCESOS QUIMICOS SOSTENIBLES, MEDIOAMBIENTALES Y ENERGIAS RENOVABLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Bieseki, L.; Simancas Coloma, R.; Jorda Moret, JL.; Bereciartua-Pérez, PJ.; Cantin Sanz, A.; Simancas-Coloma, J.; Pergher, SB.... (2018). Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62. Chemical Communications. 54(17):2122-2125. https://doi.org/10.1039/c7cc09240g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c7cc09240g es_ES
dc.description.upvformatpinicio 2122 es_ES
dc.description.upvformatpfin 2125 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 17 es_ES
dc.relation.pasarela S\359397 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Barrer, R. M., & Denny, P. J. (1961). 201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. Journal of the Chemical Society (Resumed), 971. doi:10.1039/jr9610000971 es_ES
dc.description.references Kerr, G. T. (1966). Chemistry of Crystalline Aluminosilicates. II. The Synthesis and Properties of Zeolite ZK-4. Inorganic Chemistry, 5(9), 1537-1539. doi:10.1021/ic50043a015 es_ES
dc.description.references Burton, A. W., & Zones, S. I. (2007). Organic Molecules in Zeolite Synthesis: Their Preparation and Structure-Directing Effects. Introduction to Zeolite Science and Practice, 137-179. doi:10.1016/s0167-2991(07)80793-2 es_ES
dc.description.references Zones, S. I., Nakagawa, Y., Lee, G. S., Chen, C. Y., & Yuen, L. T. (1998). Searching for new high silica zeolites through a synergy of organic templates and novel inorganic conditions. Microporous and Mesoporous Materials, 21(4-6), 199-211. doi:10.1016/s1387-1811(98)00011-0 es_ES
dc.description.references Burton, A. W., Zones, S. I., & Elomari, S. (2005). The chemistry of phase selectivity in the synthesis of high-silica zeolites. Current Opinion in Colloid & Interface Science, 10(5-6), 211-219. doi:10.1016/j.cocis.2005.08.005 es_ES
dc.description.references Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713 es_ES
dc.description.references Park, G. T., Jo, D., Ahn, N. H., Cho, J., & Hong, S. B. (2017). Synthesis and Structural Characterization of a CHA-type AlPO4 Molecular Sieve with Penta-Coordinated Framework Aluminum Atoms. Inorganic Chemistry, 56(14), 8504-8512. doi:10.1021/acs.inorgchem.7b01194 es_ES
dc.description.references Dorset, D. L., Strohmaier, K. G., Kliewer, C. E., Corma, A., Díaz-Cabañas, M. J., Rey, F., & Gilmore, C. J. (2008). Crystal Structure of ITQ-26, a 3D Framework with Extra-Large Pores. Chemistry of Materials, 20(16), 5325-5331. doi:10.1021/cm801126t es_ES
dc.description.references Dorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206o es_ES
dc.description.references Jo, D., Ryu, T., Park, G. T., Kim, P. S., Kim, C. H., Nam, I.-S., & Hong, S. B. (2016). Synthesis of High-Silica LTA and UFI Zeolites and NH3–SCR Performance of Their Copper-Exchanged Form. ACS Catalysis, 6(4), 2443-2447. doi:10.1021/acscatal.6b00489 es_ES
dc.description.references Miller, M. A., Moscoso, J. G., Koster, S. C., Gatter, M. G., & Lewis, G. J. (2007). Synthesis and characterization of the 12-ring zeolites UZM-4 (BPH) and UZM-22 (MEI) via the charge density mismatch approach in the Choline-Li2O-SrO-Al2O3-SiO2 system. Studies in Surface Science and Catalysis, 347-354. doi:10.1016/s0167-2991(07)80859-7 es_ES
dc.description.references Simancas, R., Jordá, J. L., Rey, F., Corma, A., Cantín, A., Peral, I., & Popescu, C. (2014). A New Microporous Zeolitic Silicoborate (ITQ-52) with Interconnected Small and Medium Pores. Journal of the American Chemical Society, 136(9), 3342-3345. doi:10.1021/ja411915c es_ES
dc.description.references Simancas, R., Dari, D., Velamazan, N., Navarro, M. T., Cantin, A., Jorda, J. L., … Rey, F. (2010). Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 330(6008), 1219-1222. doi:10.1126/science.1196240 es_ES
dc.description.references Martinez-Franco, R., Moliner, M., Yun, Y., Sun, J., Wan, W., Zou, X., & Corma, A. (2013). Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proceedings of the National Academy of Sciences, 110(10), 3749-3754. doi:10.1073/pnas.1220733110 es_ES
dc.description.references Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 461(7261), 246-249. doi:10.1038/nature08288 es_ES
dc.description.references Zones, S. I., & Davis, M. E. (1996). Zeolite materials: recent discoveries and future prospects. Current Opinion in Solid State and Materials Science, 1(1), 107-117. doi:10.1016/s1359-0286(96)80018-0 es_ES
dc.description.references Bellussi, G., Carati, A., & Millini, R. (2010). Industrial Potential of Zeolites. Zeolites and Catalysis, 449-491. doi:10.1002/9783527630295.ch16 es_ES
dc.description.references Zones, S. I. (2011). Translating new materials discoveries in zeolite research to commercial manufacture. Microporous and Mesoporous Materials, 144(1-3), 1-8. doi:10.1016/j.micromeso.2011.03.039 es_ES
dc.description.references Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657 es_ES
dc.description.references Korhonen, S. T., Fickel, D. W., Lobo, R. F., Weckhuysen, B. M., & Beale, A. M. (2011). Isolated Cu2+ions: active sites for selective catalytic reduction of NO. Chem. Commun., 47(2), 800-802. doi:10.1039/c0cc04218h es_ES
dc.description.references Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g es_ES
dc.description.references Bereciartua, P. J., Cantín, Á., Corma, A., Jordá, J. L., Palomino, M., Rey, F., … Casty, G. L. (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 358(6366), 1068-1071. doi:10.1126/science.aao0092 es_ES
dc.description.references Dodin, M., Paillaud, J.-L., Lorgouilloux, Y., Caullet, P., Elkaïm, E., & Bats, N. (2010). A Zeolitic Material with a Three-Dimensional Pore System Formed by Straight 12- and 10-Ring Channels Synthesized with an Imidazolium Derivative as Structure-Directing Agent. Journal of the American Chemical Society, 132(30), 10221-10223. doi:10.1021/ja103648k es_ES
dc.description.references Paillaud, J.-L. (2004). Extra-Large-Pore Zeolites with Two-Dimensional Channels Formed by 14 and 12 Rings. Science, 304(5673), 990-992. doi:10.1126/science.1098242 es_ES
dc.description.references Lorgouilloux, Y., Dodin, M., Paillaud, J.-L., Caullet, P., Michelin, L., Josien, L., … Bats, N. (2009). IM-16: A new microporous germanosilicate with a novel framework topology containing d4r and mtw composite building units. Journal of Solid State Chemistry, 182(3), 622-629. doi:10.1016/j.jssc.2008.12.002 es_ES
dc.description.references Earl, D. J., Burton, A. W., Rea, T., Ong, K., Deem, M. W., Hwang, S.-J., & Zones, S. I. (2008). Synthesis and Monte Carlo Structure Determination of SSZ-77: A New Zeolite Topology. The Journal of Physical Chemistry C, 112(24), 9099-9105. doi:10.1021/jp7116856 es_ES
dc.description.references Tang, L., Shi, L., Bonneau, C., Sun, J., Yue, H., Ojuva, A., … Zou, X. (2008). A zeolite family with chiral and achiral structures built from the same building layer. Nature Materials, 7(5), 381-385. doi:10.1038/nmat2169 es_ES
dc.description.references Corma, A., Navarro, M. T., Rey, F., Rius, J., & Valencia, S. (2001). Pure Polymorph C of Zeolite Beta Synthesized by Using Framework Isomorphous Substitution as a Structure-Directing Mechanism. Angewandte Chemie International Edition, 40(12), 2277-2280. doi:10.1002/1521-3773(20010618)40:12<2277::aid-anie2277>3.0.co;2-o es_ES
dc.description.references Yun, Y., Hernández, M., Wan, W., Zou, X., Jordá, J. L., Cantín, A., … Corma, A. (2015). The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chemical Communications, 51(36), 7602-7605. doi:10.1039/c4cc10317c es_ES
dc.description.references Jiang, J., Yun, Y., Zou, X., Jorda, J. L., & Corma, A. (2015). ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels. Chemical Science, 6(1), 480-485. doi:10.1039/c4sc02577f es_ES
dc.description.references Hernández-Rodríguez, M., Jordá, J. L., Rey, F., & Corma, A. (2012). Synthesis and Structure Determination of a New Microporous Zeolite with Large Cavities Connected by Small Pores. Journal of the American Chemical Society, 134(32), 13232-13235. doi:10.1021/ja306013k es_ES
dc.description.references Jiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J., & Corma, A. (2010). The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angewandte Chemie International Edition, 49(29), 4986-4988. doi:10.1002/anie.201001506 es_ES
dc.description.references Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302b es_ES
dc.description.references Moliner, M., Willhammar, T., Wan, W., González, J., Rey, F., Jorda, J. L., … Corma, A. (2012). Synthesis Design and Structure of a Multipore Zeolite with Interconnected 12- and 10-MR Channels. Journal of the American Chemical Society, 134(14), 6473-6478. doi:10.1021/ja301082n es_ES
dc.description.references Corma, A., Diaz-Cabanas, M. J., Jorda, J. L., Rey, F., Sastre, G., & Strohmaier, K. G. (2008). A Zeolitic Structure (ITQ-34) with Connected 9- and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. Journal of the American Chemical Society, 130(49), 16482-16483. doi:10.1021/ja806903c es_ES
dc.description.references Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238 es_ES
dc.description.references Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957 es_ES
dc.description.references Corma, A., Rey, F., Valencia, S., Jordá, J. L., & Rius, J. (2003). A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Materials, 2(7), 493-497. doi:10.1038/nmat921 es_ES
dc.description.references Werner, P. E., Eriksson, L., & Westdahl, M. (1985). TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. Journal of Applied Crystallography, 18(5), 367-370. doi:10.1107/s0021889885010512 es_ES
dc.description.references Simancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394 es_ES
dc.description.references Kolb, U., Mugnaioli, E., & Gorelik, T. E. (2011). Automated electron diffraction tomography - a new tool for nano crystal structure analysis. Crystal Research and Technology, 46(6), 542-554. doi:10.1002/crat.201100036 es_ES
dc.description.references Grosse-Kunstleve, R. W., McCusker, L. B., & Baerlocher, C. (1999). Zeolite structure determination from powder diffraction data: applications of theFOCUSmethod. Journal of Applied Crystallography, 32(3), 536-542. doi:10.1107/s0021889899003453 es_ES
dc.description.references R. Bialek , KRIBER. Crystallographic computation program , ETH Zurich Institut fur Kristallographie , Zurich, Switzerland , 1991 es_ES
dc.description.references Ch. Baerlocher , A.Hepp and W. M.Meier , DLS-76. Distance least squares refinement program , ETH Zurich Institut fur Kristallographie , Zurich, Switzerland , 1977 es_ES
dc.description.references Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900 es_ES
dc.description.references Peral, I., McKinlay, J., Knapp, M., & Ferrer, S. (2011). Design and construction of multicrystal analyser detectors using Rowland circles: application to MAD26 at ALBA. Journal of Synchrotron Radiation, 18(6), 842-850. doi:10.1107/s0909049511031529 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem