- -

Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62

Mostrar el registro completo del ítem

Bieseki, L.; Simancas Coloma, R.; Jorda Moret, JL.; Bereciartua-Pérez, PJ.; Cantin Sanz, A.; Simancas-Coloma, J.; Pergher, SB.... (2018). Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62. Chemical Communications. 54(17):2122-2125. https://doi.org/10.1039/c7cc09240g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141443

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62
Autor: Bieseki, Lindiane Simancas Coloma, Raquel Jorda Moret, Jose Luis Bereciartua-Pérez, Pablo Javier Cantin Sanz, Angel Simancas-Coloma, Jorge Pergher, Sibele B. Valencia Valencia, Susana Rey Garcia, Fernando Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Here, we present the synthesis and structure determination of the new zeolite ITQ-62. Its structure was determined via ultra-fast electron diffraction tomography and refined using powder XRD data of the calcined ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/c7cc09240g
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c7cc09240g
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2015-71842-P/ES/SINTESIS Y CARACTERIZACION AVANZADA DE NUEVOS MATERIALES ZEOLITICOS Y APLICACIONES EN ADSORCION, MEDIOAMBIENTE Y EN LA CONSERVACION DE ALIMENTOS/
info:eu-repo/grantAgreement/MINECO//MAT2015-71261-R/ES/DISEÑO RACIONAL DE MATERIALES ZEOLITICOS CON CENTROS METALICOS PARA SU APLICACION EN PROCESOS QUIMICOS SOSTENIBLES, MEDIOAMBIENTALES Y ENERGIAS RENOVABLES/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
The authors gratefully acknowledge financial support from the Spanish Government (MAT2015-71842-P and MAT2015-71261-R MINECO/FEDER and Severo Ochoa SEV-2016-0683). The authors thank ALBA Light Source for beam allocation ...[+]
Tipo: Artículo

References

Barrer, R. M., & Denny, P. J. (1961). 201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. Journal of the Chemical Society (Resumed), 971. doi:10.1039/jr9610000971

Kerr, G. T. (1966). Chemistry of Crystalline Aluminosilicates. II. The Synthesis and Properties of Zeolite ZK-4. Inorganic Chemistry, 5(9), 1537-1539. doi:10.1021/ic50043a015

Burton, A. W., & Zones, S. I. (2007). Organic Molecules in Zeolite Synthesis: Their Preparation and Structure-Directing Effects. Introduction to Zeolite Science and Practice, 137-179. doi:10.1016/s0167-2991(07)80793-2 [+]
Barrer, R. M., & Denny, P. J. (1961). 201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. Journal of the Chemical Society (Resumed), 971. doi:10.1039/jr9610000971

Kerr, G. T. (1966). Chemistry of Crystalline Aluminosilicates. II. The Synthesis and Properties of Zeolite ZK-4. Inorganic Chemistry, 5(9), 1537-1539. doi:10.1021/ic50043a015

Burton, A. W., & Zones, S. I. (2007). Organic Molecules in Zeolite Synthesis: Their Preparation and Structure-Directing Effects. Introduction to Zeolite Science and Practice, 137-179. doi:10.1016/s0167-2991(07)80793-2

Zones, S. I., Nakagawa, Y., Lee, G. S., Chen, C. Y., & Yuen, L. T. (1998). Searching for new high silica zeolites through a synergy of organic templates and novel inorganic conditions. Microporous and Mesoporous Materials, 21(4-6), 199-211. doi:10.1016/s1387-1811(98)00011-0

Burton, A. W., Zones, S. I., & Elomari, S. (2005). The chemistry of phase selectivity in the synthesis of high-silica zeolites. Current Opinion in Colloid & Interface Science, 10(5-6), 211-219. doi:10.1016/j.cocis.2005.08.005

Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713

Park, G. T., Jo, D., Ahn, N. H., Cho, J., & Hong, S. B. (2017). Synthesis and Structural Characterization of a CHA-type AlPO4 Molecular Sieve with Penta-Coordinated Framework Aluminum Atoms. Inorganic Chemistry, 56(14), 8504-8512. doi:10.1021/acs.inorgchem.7b01194

Dorset, D. L., Strohmaier, K. G., Kliewer, C. E., Corma, A., Díaz-Cabañas, M. J., Rey, F., & Gilmore, C. J. (2008). Crystal Structure of ITQ-26, a 3D Framework with Extra-Large Pores. Chemistry of Materials, 20(16), 5325-5331. doi:10.1021/cm801126t

Dorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206o

Jo, D., Ryu, T., Park, G. T., Kim, P. S., Kim, C. H., Nam, I.-S., & Hong, S. B. (2016). Synthesis of High-Silica LTA and UFI Zeolites and NH3–SCR Performance of Their Copper-Exchanged Form. ACS Catalysis, 6(4), 2443-2447. doi:10.1021/acscatal.6b00489

Miller, M. A., Moscoso, J. G., Koster, S. C., Gatter, M. G., & Lewis, G. J. (2007). Synthesis and characterization of the 12-ring zeolites UZM-4 (BPH) and UZM-22 (MEI) via the charge density mismatch approach in the Choline-Li2O-SrO-Al2O3-SiO2 system. Studies in Surface Science and Catalysis, 347-354. doi:10.1016/s0167-2991(07)80859-7

Simancas, R., Jordá, J. L., Rey, F., Corma, A., Cantín, A., Peral, I., & Popescu, C. (2014). A New Microporous Zeolitic Silicoborate (ITQ-52) with Interconnected Small and Medium Pores. Journal of the American Chemical Society, 136(9), 3342-3345. doi:10.1021/ja411915c

Simancas, R., Dari, D., Velamazan, N., Navarro, M. T., Cantin, A., Jorda, J. L., … Rey, F. (2010). Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 330(6008), 1219-1222. doi:10.1126/science.1196240

Martinez-Franco, R., Moliner, M., Yun, Y., Sun, J., Wan, W., Zou, X., & Corma, A. (2013). Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proceedings of the National Academy of Sciences, 110(10), 3749-3754. doi:10.1073/pnas.1220733110

Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 461(7261), 246-249. doi:10.1038/nature08288

Zones, S. I., & Davis, M. E. (1996). Zeolite materials: recent discoveries and future prospects. Current Opinion in Solid State and Materials Science, 1(1), 107-117. doi:10.1016/s1359-0286(96)80018-0

Bellussi, G., Carati, A., & Millini, R. (2010). Industrial Potential of Zeolites. Zeolites and Catalysis, 449-491. doi:10.1002/9783527630295.ch16

Zones, S. I. (2011). Translating new materials discoveries in zeolite research to commercial manufacture. Microporous and Mesoporous Materials, 144(1-3), 1-8. doi:10.1016/j.micromeso.2011.03.039

Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657

Korhonen, S. T., Fickel, D. W., Lobo, R. F., Weckhuysen, B. M., & Beale, A. M. (2011). Isolated Cu2+ions: active sites for selective catalytic reduction of NO. Chem. Commun., 47(2), 800-802. doi:10.1039/c0cc04218h

Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g

Bereciartua, P. J., Cantín, Á., Corma, A., Jordá, J. L., Palomino, M., Rey, F., … Casty, G. L. (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 358(6366), 1068-1071. doi:10.1126/science.aao0092

Dodin, M., Paillaud, J.-L., Lorgouilloux, Y., Caullet, P., Elkaïm, E., & Bats, N. (2010). A Zeolitic Material with a Three-Dimensional Pore System Formed by Straight 12- and 10-Ring Channels Synthesized with an Imidazolium Derivative as Structure-Directing Agent. Journal of the American Chemical Society, 132(30), 10221-10223. doi:10.1021/ja103648k

Paillaud, J.-L. (2004). Extra-Large-Pore Zeolites with Two-Dimensional Channels Formed by 14 and 12 Rings. Science, 304(5673), 990-992. doi:10.1126/science.1098242

Lorgouilloux, Y., Dodin, M., Paillaud, J.-L., Caullet, P., Michelin, L., Josien, L., … Bats, N. (2009). IM-16: A new microporous germanosilicate with a novel framework topology containing d4r and mtw composite building units. Journal of Solid State Chemistry, 182(3), 622-629. doi:10.1016/j.jssc.2008.12.002

Earl, D. J., Burton, A. W., Rea, T., Ong, K., Deem, M. W., Hwang, S.-J., & Zones, S. I. (2008). Synthesis and Monte Carlo Structure Determination of SSZ-77: A New Zeolite Topology. The Journal of Physical Chemistry C, 112(24), 9099-9105. doi:10.1021/jp7116856

Tang, L., Shi, L., Bonneau, C., Sun, J., Yue, H., Ojuva, A., … Zou, X. (2008). A zeolite family with chiral and achiral structures built from the same building layer. Nature Materials, 7(5), 381-385. doi:10.1038/nmat2169

Corma, A., Navarro, M. T., Rey, F., Rius, J., & Valencia, S. (2001). Pure Polymorph C of Zeolite Beta Synthesized by Using Framework Isomorphous Substitution as a Structure-Directing Mechanism. Angewandte Chemie International Edition, 40(12), 2277-2280. doi:10.1002/1521-3773(20010618)40:12<2277::aid-anie2277>3.0.co;2-o

Yun, Y., Hernández, M., Wan, W., Zou, X., Jordá, J. L., Cantín, A., … Corma, A. (2015). The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chemical Communications, 51(36), 7602-7605. doi:10.1039/c4cc10317c

Jiang, J., Yun, Y., Zou, X., Jorda, J. L., & Corma, A. (2015). ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels. Chemical Science, 6(1), 480-485. doi:10.1039/c4sc02577f

Hernández-Rodríguez, M., Jordá, J. L., Rey, F., & Corma, A. (2012). Synthesis and Structure Determination of a New Microporous Zeolite with Large Cavities Connected by Small Pores. Journal of the American Chemical Society, 134(32), 13232-13235. doi:10.1021/ja306013k

Jiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J., & Corma, A. (2010). The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angewandte Chemie International Edition, 49(29), 4986-4988. doi:10.1002/anie.201001506

Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302b

Moliner, M., Willhammar, T., Wan, W., González, J., Rey, F., Jorda, J. L., … Corma, A. (2012). Synthesis Design and Structure of a Multipore Zeolite with Interconnected 12- and 10-MR Channels. Journal of the American Chemical Society, 134(14), 6473-6478. doi:10.1021/ja301082n

Corma, A., Diaz-Cabanas, M. J., Jorda, J. L., Rey, F., Sastre, G., & Strohmaier, K. G. (2008). A Zeolitic Structure (ITQ-34) with Connected 9- and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. Journal of the American Chemical Society, 130(49), 16482-16483. doi:10.1021/ja806903c

Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238

Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957

Corma, A., Rey, F., Valencia, S., Jordá, J. L., & Rius, J. (2003). A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Materials, 2(7), 493-497. doi:10.1038/nmat921

Werner, P. E., Eriksson, L., & Westdahl, M. (1985). TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. Journal of Applied Crystallography, 18(5), 367-370. doi:10.1107/s0021889885010512

Simancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394

Kolb, U., Mugnaioli, E., & Gorelik, T. E. (2011). Automated electron diffraction tomography - a new tool for nano crystal structure analysis. Crystal Research and Technology, 46(6), 542-554. doi:10.1002/crat.201100036

Grosse-Kunstleve, R. W., McCusker, L. B., & Baerlocher, C. (1999). Zeolite structure determination from powder diffraction data: applications of theFOCUSmethod. Journal of Applied Crystallography, 32(3), 536-542. doi:10.1107/s0021889899003453

R. Bialek , KRIBER. Crystallographic computation program , ETH Zurich Institut fur Kristallographie , Zurich, Switzerland , 1991

Ch. Baerlocher , A.Hepp and W. M.Meier , DLS-76. Distance least squares refinement program , ETH Zurich Institut fur Kristallographie , Zurich, Switzerland , 1977

Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900

Peral, I., McKinlay, J., Knapp, M., & Ferrer, S. (2011). Design and construction of multicrystal analyser detectors using Rowland circles: application to MAD26 at ALBA. Journal of Synchrotron Radiation, 18(6), 842-850. doi:10.1107/s0909049511031529

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem