Mostrar el registro sencillo del ítem
dc.contributor.author | Sapper, Mayra Ileana | es_ES |
dc.contributor.author | Chiralt, A. | es_ES |
dc.date.accessioned | 2020-04-24T07:13:50Z | |
dc.date.available | 2020-04-24T07:13:50Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141446 | |
dc.description.abstract | [EN] Considerable research has focused on the control of the physiological activity of fruits and vegetables in postharvest conditions as well as microbial decay. The use of edible coatings (ECs) carrying active compounds (e.g., antimicrobials) represents an alternative preservation technology since they can modify the internal gas composition by creating a modified atmosphere through the regulation of the gas exchange (oxygen, carbon dioxide, volatiles) while also limiting water transfer. Of the edible polymers able to form coating films, starch exhibits several advantages, such as its ready availability, low cost and good filmogenic capacity, forming colourless and tasteless films with high oxygen barrier capacity. Nevertheless, starch films are highly water sensitive and exhibit limited water vapour barrier properties and mechanical resistance. Different compounds, such as plasticizers, surfactants, lipids or other polymers, have been incorporated to improve the functional properties of starch-based films/coatings. This paper reviews the starch-based ECs used to preserve the main properties of fruits and vegetables in postharvest conditions as well as the different factors affecting the coating efficiency, such as surface properties or incorporation of antifungal compounds. The great variability in the plant products requires specific studies to optimize the formulation of coating forming products. | es_ES |
dc.description.sponsorship | The authors acknowledge the financial support from the Ministerio de Economia y Competitividad (MINECO) of Spain, through the projects and AGL2016-76699-R and RTA2015-00037-C02. Mayra Sapper thanks the Conselleria de Educacion, Investigacion, Cultura y Deporte de la Comunitat Valenciana for the Santiago Grisolia grant GRISOLIA/2015/001. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Coatings | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Edible coating | es_ES |
dc.subject | Starch | es_ES |
dc.subject | Antifungal | es_ES |
dc.subject | Postharvest | es_ES |
dc.subject | Preservation | es_ES |
dc.subject | Fruit | es_ES |
dc.subject | Vegetable | es_ES |
dc.subject | Wettability | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Starch-Based Coatings for Preservation of Fruits and Vegetables | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/coatings8050152 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2015-00037-C02/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2015%2F001/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Sapper, MI.; Chiralt, A. (2018). Starch-Based Coatings for Preservation of Fruits and Vegetables. Coatings. 8(5). https://doi.org/10.3390/coatings8050152 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/coatings8050152 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2079-6412 | es_ES |
dc.relation.pasarela | S\361065 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Palou, L., Valencia-Chamorro, S., & Pérez-Gago, M. (2015). Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. Coatings, 5(4), 962-986. doi:10.3390/coatings5040962 | es_ES |
dc.description.references | Park, H. J. (1999). Development of advanced edible coatings for fruits. Trends in Food Science & Technology, 10(8), 254-260. doi:10.1016/s0924-2244(00)00003-0 | es_ES |
dc.description.references | Karaca, H., Pérez-Gago, M. B., Taberner, V., & Palou, L. (2014). Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose–lipid composite edible coatings for plums. International Journal of Food Microbiology, 179, 72-79. doi:10.1016/j.ijfoodmicro.2014.03.027 | es_ES |
dc.description.references | Fagundes, C., Palou, L., Monteiro, A. R., & Pérez-Gago, M. B. (2015). Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes. Scientia Horticulturae, 193, 249-257. doi:10.1016/j.scienta.2015.07.027 | es_ES |
dc.description.references | Raybaudi-Massilia, R., Mosqueda-Melgar, J., Soliva-Fortuny, R., & Martín-Belloso, O. (2016). Combinational Edible Antimicrobial Films and Coatings. Antimicrobial Food Packaging, 633-646. doi:10.1016/b978-0-12-800723-5.00052-8 | es_ES |
dc.description.references | Mariniello, L., Giosafatto, C. V. L., Di Pierro, P., Sorrentino, A., & Porta, R. (2010). Swelling, Mechanical, and Barrier Properties of Albedo-Based Films Prepared in the Presence of Phaseolin Cross-Linked or Not by Transglutaminase. Biomacromolecules, 11(9), 2394-2398. doi:10.1021/bm100566j | es_ES |
dc.description.references | Kang, H.-J., Kim, S.-J., You, Y.-S., Lacroix, M., & Han, J. (2013). Inhibitory effect of soy protein coating formulations on walnut (Juglans regia L.) kernels against lipid oxidation. LWT - Food Science and Technology, 51(1), 393-396. doi:10.1016/j.lwt.2012.10.019 | es_ES |
dc.description.references | Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2010). Development of Edible Films and Coatings with Antimicrobial Activity. Food and Bioprocess Technology, 4(6), 849-875. doi:10.1007/s11947-010-0434-1 | es_ES |
dc.description.references | Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095-1107. doi:10.1016/j.ijbiomac.2017.11.097 | es_ES |
dc.description.references | Mehyar, G. F., Al-Qadiri, H. M., & Swanson, B. G. (2012). Edible Coatings and Retention of Potassium Sorbate on Apples, Tomatoes and Cucumbers to Improve Antifungal Activity During Refrigerated Storage. Journal of Food Processing and Preservation, 38(1), 175-182. doi:10.1111/j.1745-4549.2012.00762.x | es_ES |
dc.description.references | Luchese, C. L., Spada, J. C., & Tessaro, I. C. (2017). Starch content affects physicochemical properties of corn and cassava starch-based films. Industrial Crops and Products, 109, 619-626. doi:10.1016/j.indcrop.2017.09.020 | es_ES |
dc.description.references | Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148. doi:10.1016/j.foodhyd.2016.09.009 | es_ES |
dc.description.references | Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. Journal of Food Engineering, 110(2), 208-213. doi:10.1016/j.jfoodeng.2011.05.034 | es_ES |
dc.description.references | MILLER, K. S., UPADHYAYA, S. K., & KROCHTA, J. M. (2008). Permeability of d-Limonene in Whey Protein Films. Journal of Food Science, 63(2), 244-247. doi:10.1111/j.1365-2621.1998.tb15718.x | es_ES |
dc.description.references | Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. doi:10.1016/j.tifs.2011.02.004 | es_ES |
dc.description.references | Lin, D., & Zhao, Y. (2007). Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60-75. doi:10.1111/j.1541-4337.2007.00018.x | es_ES |
dc.description.references | Rojas-Graü, M. A., Tapia, M. S., Rodríguez, F. J., Carmona, A. J., & Martin-Belloso, O. (2007). Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocolloids, 21(1), 118-127. doi:10.1016/j.foodhyd.2006.03.001 | es_ES |
dc.description.references | Acevedo-Fani, A., Soliva-Fortuny, R., & Martín-Belloso, O. (2017). Nanoemulsions as edible coatings. Current Opinion in Food Science, 15, 43-49. doi:10.1016/j.cofs.2017.06.002 | es_ES |
dc.description.references | ZISMAN, W. A. (1964). Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution. Contact Angle, Wettability, and Adhesion, 1-51. doi:10.1021/ba-1964-0043.ch001 | es_ES |
dc.description.references | Dann, J. . (1970). Forces involved in the adhesive process. Journal of Colloid and Interface Science, 32(2), 302-320. doi:10.1016/0021-9797(70)90054-8 | es_ES |
dc.description.references | Lima, Á. M., Cerqueira, M. A., Souza, B. W. S., Santos, E. C. M., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2010). New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits – Influence on fruits gas transfer rate. Journal of Food Engineering, 97(1), 101-109. doi:10.1016/j.jfoodeng.2009.09.021 | es_ES |
dc.description.references | Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Souza, M. P., Teixeira, J. A., & Vicente, A. A. (2009). Physical properties of edible coatings and films made with a polysaccharide from Anacardium occidentale L. Journal of Food Engineering, 95(3), 379-385. doi:10.1016/j.jfoodeng.2009.05.020 | es_ES |
dc.description.references | Cerqueira, M. A., Lima, Á. M., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2009). Suitability of novel galactomannans as edible coatings for tropical fruits. Journal of Food Engineering, 94(3-4), 372-378. doi:10.1016/j.jfoodeng.2009.04.003 | es_ES |
dc.description.references | Casariego, A., Souza, B. W. S., Vicente, A. A., Teixeira, J. A., Cruz, L., & Díaz, R. (2008). Chitosan coating surface properties as affected by plasticizer, surfactant and polymer concentrations in relation to the surface properties of tomato and carrot. Food Hydrocolloids, 22(8), 1452-1459. doi:10.1016/j.foodhyd.2007.09.010 | es_ES |
dc.description.references | Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63-70. doi:10.1016/j.postharvbio.2006.11.015 | es_ES |
dc.description.references | Choi, W. Y., Park, H. J., Ahn, D. J., Lee, J., & Lee, C. Y. (2002). Wettability of Chitosan Coating Solution on’Fuji’ Apple Skin. Journal of Food Science, 67(7), 2668-2672. doi:10.1111/j.1365-2621.2002.tb08796.x | es_ES |
dc.description.references | Hershko, V., & Nussinovitch, A. (1998). The Behavior of Hydrocolloid Coatings on Vegetative Materials. Biotechnology Progress, 14(5), 756-765. doi:10.1021/bp980075v | es_ES |
dc.description.references | Hagenmaier, R. D., & Baker, R. A. (1993). Reduction in gas exchange of citrus fruit by wax coatings. Journal of Agricultural and Food Chemistry, 41(2), 283-287. doi:10.1021/jf00026a029 | es_ES |
dc.description.references | Versino, F., Lopez, O. V., Garcia, M. A., & Zaritzky, N. E. (2016). Starch-based films and food coatings: An overview. Starch - Stärke, 68(11-12), 1026-1037. doi:10.1002/star.201600095 | es_ES |
dc.description.references | Acosta, S., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135-143. doi:10.1016/j.foodhyd.2015.03.015 | es_ES |
dc.description.references | Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762-769. doi:10.1016/j.foodres.2009.02.026 | es_ES |
dc.description.references | Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075 | es_ES |
dc.description.references | García, M. A., Martino, M. N., & Zaritzky, N. E. (1998). Plasticized Starch-Based Coatings To Improve Strawberry (Fragaria×Ananassa) Quality and Stability. Journal of Agricultural and Food Chemistry, 46(9), 3758-3767. doi:10.1021/jf980014c | es_ES |
dc.description.references | Saberi, B., Golding, J. B., Marques, J. R., Pristijono, P., Chockchaisawasdee, S., Scarlett, C. J., & Stathopoulos, C. E. (2018). Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’ oranges. Postharvest Biology and Technology, 137, 9-20. doi:10.1016/j.postharvbio.2017.11.003 | es_ES |
dc.description.references | Cháfer, M., Sánchez-González, L., González-Martínez, C., & Chiralt, A. (2012). Fungal Decay and Shelf Life of Oranges Coated With Chitosan and Bergamot, Thyme, and Tea Tree Essential Oils. Journal of Food Science, 77(8), E182-E187. doi:10.1111/j.1750-3841.2012.02827.x | es_ES |
dc.description.references | Nawab, A., Alam, F., & Hasnain, A. (2017). Mango kernel starch as a novel edible coating for enhancing shelf- life of tomato ( Solanum lycopersicum ) fruit. International Journal of Biological Macromolecules, 103, 581-586. doi:10.1016/j.ijbiomac.2017.05.057 | es_ES |
dc.description.references | Vieira, J. M., Flores-López, M. L., de Rodríguez, D. J., Sousa, M. C., Vicente, A. A., & Martins, J. T. (2016). Effect of chitosan– Aloe vera coating on postharvest quality of blueberry ( Vaccinium corymbosum ) fruit. Postharvest Biology and Technology, 116, 88-97. doi:10.1016/j.postharvbio.2016.01.011 | es_ES |
dc.description.references | Sabbah, M., Di Pierro, P., Giosafatto, C., Esposito, M., Mariniello, L., Regalado-Gonzales, C., & Porta, R. (2017). Plasticizing Effects of Polyamines in Protein-Based Films. International Journal of Molecular Sciences, 18(5), 1026. doi:10.3390/ijms18051026 | es_ES |
dc.description.references | Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109(3), 372-379. doi:10.1016/j.jfoodeng.2011.11.019 | es_ES |
dc.description.references | Perdones, Á., Chiralt, A., & Vargas, M. (2016). Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloids, 57, 271-279. doi:10.1016/j.foodhyd.2016.02.006 | es_ES |
dc.description.references | Sagnelli, D., Hooshmand, K., Kemmer, G., Kirkensgaard, J., Mortensen, K., Giosafatto, C., … Blennow, A. (2017). Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative. International Journal of Molecular Sciences, 18(10), 2075. doi:10.3390/ijms18102075 | es_ES |
dc.description.references | Romani, V. P., Hernández, C. P., & Martins, V. G. (2018). Pink pepper phenolic compounds incorporation in starch/protein blends and its potential to inhibit apple browning. Food Packaging and Shelf Life, 15, 151-158. doi:10.1016/j.fpsl.2018.01.003 | es_ES |
dc.description.references | Chiumarelli, M., Pereira, L. M., Ferrari, C. C., Sarantópoulos, C. I. G. L., & Hubinger, M. D. (2010). Cassava Starch Coating and Citric Acid to Preserve Quality Parameters of Fresh-Cut «Tommy Atkins» Mango. Journal of Food Science, 75(5), E297-E304. doi:10.1111/j.1750-3841.2010.01636.x | es_ES |
dc.description.references | Ortega-Toro, R., Collazo-Bigliardi, S., Roselló, J., Santamarina, P., & Chiralt, A. (2017). Antifungal starch-based edible films containing Aloe vera. Food Hydrocolloids, 72, 1-10. doi:10.1016/j.foodhyd.2017.05.023 | es_ES |
dc.description.references | Botelho, L. N. S., Rocha, D. A., Braga, M. A., Silva, A., & de Abreu, C. M. P. (2016). Quality of guava cv. ‘Pedro Sato’ treated with cassava starch and cinnamon essential oil. Scientia Horticulturae, 209, 214-220. doi:10.1016/j.scienta.2016.06.012 | es_ES |
dc.description.references | De Aquino, A. B., Blank, A. F., & de Aquino Santana, L. C. L. (2015). Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chemistry, 171, 108-116. doi:10.1016/j.foodchem.2014.08.077 | es_ES |
dc.description.references | Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I., & Mei, L. H. I. (2015). Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology, 109, 57-64. doi:10.1016/j.postharvbio.2015.05.015 | es_ES |
dc.description.references | Razak, A. S., & Lazim, A. M. (2015). Starch-based edible film with gum arabic for fruits coating. doi:10.1063/1.4931299 | es_ES |
dc.description.references | Das, D. K., Dutta, H., & Mahanta, C. L. (2013). Development of a rice starch-based coating with antioxidant and microbe-barrier properties and study of its effect on tomatoes stored at room temperature. LWT - Food Science and Technology, 50(1), 272-278. doi:10.1016/j.lwt.2012.05.018 | es_ES |
dc.description.references | Garcia, L. C., Pereira, L. M., de Luca Sarantópoulos, C. I. G., & Hubinger, M. D. (2010). Selection of an Edible Starch Coating for Minimally Processed Strawberry. Food and Bioprocess Technology, 3(6), 834-842. doi:10.1007/s11947-009-0313-9 | es_ES |
dc.description.references | Boubaker, H., Karim, H., El Hamdaoui, A., Msanda, F., Leach, D., Bombarda, I., … Ait Ben Aoumar, A. (2016). Chemical characterization and antifungal activities of four Thymus species essential oils against postharvest fungal pathogens of citrus. Industrial Crops and Products, 86, 95-101. doi:10.1016/j.indcrop.2016.03.036 | es_ES |
dc.description.references | Junqueira-Gonçalves, M. P., Alarcón, E., & Niranjan, K. (2013). Development of antifungal packaging for berries extruded from recycled PET. Food Control, 33(2), 455-460. doi:10.1016/j.foodcont.2013.03.031 | es_ES |
dc.description.references | Tesfay, S. Z., Magwaza, L. S., Mbili, N., & Mditshwa, A. (2017). Carboxyl methylcellulose (CMC) containing moringa plant extracts as new postharvest organic edible coating for Avocado ( Persea americana Mill.) fruit. Scientia Horticulturae, 226, 201-207. doi:10.1016/j.scienta.2017.08.047 | es_ES |
dc.description.references | Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of Essential Oils in Bioactive Edible Coatings: A Review. Food Engineering Reviews, 3(1), 1-16. doi:10.1007/s12393-010-9031-3 | es_ES |
dc.description.references | Perdones, A., Sánchez-González, L., Chiralt, A., & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32-41. doi:10.1016/j.postharvbio.2012.04.002 | es_ES |
dc.description.references | Valencia-Chamorro, S. A., Pérez-Gago, M. B., Del Río, M. A., & Palou, L. (2010). Effect of Antifungal Hydroxypropyl Methylcellulose-Lipid Edible Composite Coatings on Penicillium Decay Development and Postharvest Quality of Cold-Stored «Ortanique» Mandarins. Journal of Food Science, 75(8), S418-S426. doi:10.1111/j.1750-3841.2010.01801.x | es_ES |
dc.description.references | Ali, A., Noh, N. M., & Mustafa, M. A. (2015). Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food Packaging and Shelf Life, 3, 56-61. doi:10.1016/j.fpsl.2014.10.003 | es_ES |
dc.description.references | Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52(2), 137-145. doi:10.1016/j.postharvbio.2008.11.009 | es_ES |
dc.description.references | Marín, A., Atarés, L., & Chiralt, A. (2017). Improving function of biocontrol agents incorporated in antifungal fruit coatings: a review. Biocontrol Science and Technology, 27(10), 1220-1241. doi:10.1080/09583157.2017.1390068 | es_ES |
dc.description.references | Ruiz-Moyano, S., Martín, A., Villalobos, M. C., Calle, A., Serradilla, M. J., Córdoba, M. G., & Hernández, A. (2016). Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Food Microbiology, 57, 45-53. doi:10.1016/j.fm.2016.01.003 | es_ES |
dc.description.references | Marín, A., Cháfer, M., Atarés, L., Chiralt, A., Torres, R., Usall, J., & Teixidó, N. (2016). Effect of different coating-forming agents on the efficacy of the biocontrol agent Candida sake CPA-1 for control of Botrytis cinerea on grapes. Biological Control, 96, 108-119. doi:10.1016/j.biocontrol.2016.02.012 | es_ES |
dc.description.references | Marín, A., Atarés, L., Cháfer, M., & Chiralt, A. (2017). Stability of biocontrol products carrying Candida sake CPA-1 in starch derivatives as a function of water activity. Biocontrol Science and Technology, 27(2), 268-287. doi:10.1080/09583157.2017.1279587 | es_ES |
dc.description.references | Noshirvani, N., Ghanbarzadeh, B., Gardrat, C., Rezaei, M. R., Hashemi, M., Le Coz, C., & Coma, V. (2017). Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids, 70, 36-45. doi:10.1016/j.foodhyd.2017.03.015 | es_ES |
dc.description.references | Perdones, Á., Vargas, M., Atarés, L., & Chiralt, A. (2014). Physical, antioxidant and antimicrobial properties of chitosan–cinnamon leaf oil films as affected by oleic acid. Food Hydrocolloids, 36, 256-264. doi:10.1016/j.foodhyd.2013.10.003 | es_ES |
dc.description.references | Acosta, S., Chiralt, A., Santamarina, P., Rosello, J., González-Martínez, C., & Cháfer, M. (2016). Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocolloids, 61, 233-240. doi:10.1016/j.foodhyd.2016.05.008 | es_ES |
dc.description.references | Avila-Sosa, R., Palou, E., Jiménez Munguía, M. T., Nevárez-Moorillón, G. V., Navarro Cruz, A. R., & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153(1-2), 66-72. doi:10.1016/j.ijfoodmicro.2011.10.017 | es_ES |
dc.description.references | Wang, Y., Li, Y., Xu, W., Zheng, X., Zhang, X., Abdelhai, M. H., … Zhang, H. (2018). Exploring the effect of β-glucan on the biocontrol activity of Cryptococcus podzolicus against postharvest decay of apples and the possible mechanisms involved. Biological Control, 121, 14-22. doi:10.1016/j.biocontrol.2018.02.001 | es_ES |
dc.description.references | De Paiva, E., Serradilla, M. J., Ruiz-Moyano, S., Córdoba, M. G., Villalobos, M. C., Casquete, R., & Hernández, A. (2017). Combined effect of antagonistic yeast and modified atmosphere to control Penicillium expansum infection in sweet cherries cv. Ambrunés. International Journal of Food Microbiology, 241, 276-282. doi:10.1016/j.ijfoodmicro.2016.10.033 | es_ES |
dc.description.references | Zhou, Y., Zhang, L., & Zeng, K. (2016). Efficacy of Pichia membranaefaciens combined with chitosan against Colletotrichum gloeosporioides in citrus fruits and possible modes of action. Biological Control, 96, 39-47. doi:10.1016/j.biocontrol.2016.02.001 | es_ES |
dc.description.references | Gava, C. A. T., & Pinto, J. M. (2016). Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f. sp. melonis using seed treatment with Trichoderma spp. and liquid compost. Biological Control, 97, 13-20. doi:10.1016/j.biocontrol.2016.02.010 | es_ES |
dc.description.references | Zeng, L., Yu, C., Fu, D., Lu, H., Zhu, R., Lu, L., … Yu, T. (2015). Improvement in the effectiveness of Cryptococcus laurentii to control postharvest blue mold of pear by its culture in β-glucan amended nutrient broth. Postharvest Biology and Technology, 104, 26-32. doi:10.1016/j.postharvbio.2015.03.005 | es_ES |
dc.description.references | Parafati, L., Vitale, A., Restuccia, C., & Cirvilleri, G. (2015). Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiology, 47, 85-92. doi:10.1016/j.fm.2014.11.013 | es_ES |