- -

Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth

Show full item record

Agüero-Rodríguez, Á.; Quiles-Carrillo, L.; Jorda-Vilaplana, A.; Fenollar, O.; Montanes, N. (2019). Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer International. 68(5):893-903. https://doi.org/10.1002/pi.5779

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141454

Files in this item

Item Metadata

Title: Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth
Author: Agüero-Rodríguez, Ángel Quiles-Carrillo, Luis Jorda-Vilaplana, Amparo Fenollar, Octavio Montanes, Nestor
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Issued date:
Abstract:
[EN] Environmentally friendly composites from poly(lactic acid) (PLA) and diatomaceous earth (DE) were successfully manufactured by extrusion, followed by injection moulding. DE was used as a filler; several compatibiliz ...[+]
Subjects: Poly(lactic acid) , Diatomaceous earth , Composites , Natural fillers
Copyrigths: Reserva de todos los derechos
Source:
Polymer International. (issn: 0959-8103 )
DOI: 10.1002/pi.5779
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/pi.5779
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/
info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/
Thanks:
This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) program number MAT2017-84909-C2-2-R. L. Quiles-Carrillo wants to thank GV for his FPI grant (ACIF/2016/182) and the MECD for his ...[+]
Type: Artículo

References

Tornuk, F., Hancer, M., Sagdic, O., & Yetim, H. (2015). LLDPE based food packaging incorporated with nanoclays grafted with bioactive compounds to extend shelf life of some meat products. LWT - Food Science and Technology, 64(2), 540-546. doi:10.1016/j.lwt.2015.06.030

Kuswandi, B., Jayus, Restyana, A., Abdullah, A., Heng, L. Y., & Ahmad, M. (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control, 25(1), 184-189. doi:10.1016/j.foodcont.2011.10.008

Kuswandi, B. (2017). Environmental friendly food nano-packaging. Environmental Chemistry Letters, 15(2), 205-221. doi:10.1007/s10311-017-0613-7 [+]
Tornuk, F., Hancer, M., Sagdic, O., & Yetim, H. (2015). LLDPE based food packaging incorporated with nanoclays grafted with bioactive compounds to extend shelf life of some meat products. LWT - Food Science and Technology, 64(2), 540-546. doi:10.1016/j.lwt.2015.06.030

Kuswandi, B., Jayus, Restyana, A., Abdullah, A., Heng, L. Y., & Ahmad, M. (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control, 25(1), 184-189. doi:10.1016/j.foodcont.2011.10.008

Kuswandi, B. (2017). Environmental friendly food nano-packaging. Environmental Chemistry Letters, 15(2), 205-221. doi:10.1007/s10311-017-0613-7

Horodytska, O., Valdés, F. J., & Fullana, A. (2018). Plastic flexible films waste management – A state of art review. Waste Management, 77, 413-425. doi:10.1016/j.wasman.2018.04.023

Trongsatitkul, T., & Chaiwong, S. (2017). In situ fibre-reinforced composite films of poly(lactic acid)/low-density polyethylene blends: effects of composition on morphology, transport and mechanical properties. Polymer International, 66(11), 1456-1462. doi:10.1002/pi.5449

Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36-45. doi:10.1016/j.carbpol.2016.03.051

Brandelli, A., Brum, L. F. W., & dos Santos, J. H. Z. (2017). Nanostructured bioactive compounds for ecological food packaging. Environmental Chemistry Letters, 15(2), 193-204. doi:10.1007/s10311-017-0621-7

Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. doi:10.1016/j.progpolymsci.2013.05.008

Kumar, S., & Maiti, P. (2015). Understanding the controlled biodegradation of polymers using nanoclays. Polymer, 76, 25-33. doi:10.1016/j.polymer.2015.08.044

Yahiaoui, F., Benhacine, F., Ferfera-Harrar, H., Habi, A., Hadj-Hamou, A. S., & Grohens, Y. (2014). Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polymer Bulletin, 72(2), 235-254. doi:10.1007/s00289-014-1269-0

Ibarguren, C., Naranjo, P. M., Stötzel, C., Audisio, M. C., Sham, E. L., Farfán Torres, E. M., & Müller, F. A. (2014). Adsorption of nisin on raw montmorillonite. Applied Clay Science, 90, 88-95. doi:10.1016/j.clay.2013.12.031

Kuswandi, B. (2016). Nanotechnology in Food Packaging. Sustainable Agriculture Reviews, 151-183. doi:10.1007/978-3-319-39303-2_6

Wróblewska-Krepsztul, J., Rydzkowski, T., Borowski, G., Szczypiński, M., Klepka, T., & Thakur, V. K. (2018). Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization, 23(4), 383-395. doi:10.1080/1023666x.2018.1455382

Gorrasi, G., Tortora, M., Vittoria, V., Pollet, E., Lepoittevin, B., Alexandre, M., & Dubois, P. (2003). Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion. Polymer, 44(8), 2271-2279. doi:10.1016/s0032-3861(03)00108-3

Pasbakhsh, P., De Silva, R., Vahedi, V., & Jock Churchman, G. (2016). Halloysite nanotubes: prospects and challenges of their use as additives and carriers – A focused review. Clay Minerals, 51(3), 479-487. doi:10.1180/claymin.2016.051.3.15

Bendahou, D., Bendahou, A., Grohens, Y., & Kaddami, H. (2015). New nanocomposite design from zeolite and poly(lactic acid). Industrial Crops and Products, 72, 107-118. doi:10.1016/j.indcrop.2014.12.055

Lorite, G. S., Rocha, J. M., Miilumäki, N., Saavalainen, P., Selkälä, T., Morales-Cid, G., … Toth, G. (2017). Evaluation of physicochemical/microbial properties and life cycle assessment (LCA) of PLA-based nanocomposite active packaging. LWT, 75, 305-315. doi:10.1016/j.lwt.2016.09.004

Cacciotti, I., Mori, S., Cherubini, V., & Nanni, F. (2018). Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. International Journal of Biological Macromolecules, 112, 567-575. doi:10.1016/j.ijbiomac.2018.02.018

Davoudizadeh, S., Ghasemi, M., Khezri, K., & Bahadorikhalili, S. (2017). Poly(styrene-co-butyl acrylate)/mesoporous diatomaceous earth mineral nanocomposites by in situ AGET ATRP. Journal of Thermal Analysis and Calorimetry, 131(3), 2513-2521. doi:10.1007/s10973-017-6771-9

Aw, M. S., Simovic, S., Yu, Y., Addai-Mensah, J., & Losic, D. (2012). Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technology, 223, 52-58. doi:10.1016/j.powtec.2011.04.023

Medarevic, D., Losic, D., & Ibric, S. (2016). Diatoms - nature materials with great potential for bioapplications. Hemijska industrija, 70(6), 613-627. doi:10.2298/hemind150708069m

Özen, İ., Şimşek, S., & Okyay, G. (2015). Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions. Applied Surface Science, 332, 22-31. doi:10.1016/j.apsusc.2015.01.149

Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057

Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588

Samper, M. D., Petrucci, R., Sánchez-Nacher, L., Balart, R., & Kenny, J. M. (2014). Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique. Polymer Composites, 36(7), 1205-1212. doi:10.1002/pc.23023

Khan, M. A., & Hassan, M. M. (2006). Effect of γ-aminopropyl trimethoxy silane on the performance of jute–polycarbonate composites. Journal of Applied Polymer Science, 100(5), 4142-4154. doi:10.1002/app.23441

Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062

Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082

Tábi, T., Égerházi, A. Z., Tamás, P., Czigány, T., & Kovács, J. G. (2014). Investigation of injection moulded poly(lactic acid) reinforced with long basalt fibres. Composites Part A: Applied Science and Manufacturing, 64, 99-106. doi:10.1016/j.compositesa.2014.05.001

Re, G. L., Benali, S., Habibi, Y., Raquez, J.-M., & Dubois, P. (2014). Stereocomplexed PLA nanocomposites: From in situ polymerization to materials properties. European Polymer Journal, 54, 138-150. doi:10.1016/j.eurpolymj.2014.03.004

Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339

Mauck, S. C., Wang, S., Ding, W., Rohde, B. J., Fortune, C. K., Yang, G., … Robertson, M. L. (2016). Biorenewable Tough Blends of Polylactide and Acrylated Epoxidized Soybean Oil Compatibilized by a Polylactide Star Polymer. Macromolecules, 49(5), 1605-1615. doi:10.1021/acs.macromol.5b02613

Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329

Silverajah, V. S. G., Ibrahim, N. A., Zainuddin, N., Yunus, W. M. Z. W., & Hassan, H. A. (2012). Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Epoxidized Palm Olein Blend. Molecules, 17(10), 11729-11747. doi:10.3390/molecules171011729

Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024

Liu, H., & Zhang, J. (2011). Research progress in toughening modification of poly(lactic acid). Journal of Polymer Science Part B: Polymer Physics, 49(15), 1051-1083. doi:10.1002/polb.22283

Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043

Carbonell-Verdu, A., Samper, M. D., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products, 104, 278-286. doi:10.1016/j.indcrop.2017.04.050

Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031

Ali, F., Chang, Y.-W., Kang, S. C., & Yoon, J. Y. (2008). Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polymer Bulletin, 62(1), 91-98. doi:10.1007/s00289-008-1012-9

Xu, Y.-Q., & Qu, J.-P. (2009). Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). Journal of Applied Polymer Science, 112(6), 3185-3191. doi:10.1002/app.29797

Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164

Arrieta, M. P., Castro-López, M. del M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., & González-Rodríguez, M. V. (2014). Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. doi:10.1021/jf5029812

Pilla, S., Kramschuster, A., Yang, L., Lee, J., Gong, S., & Turng, L.-S. (2009). Microcellular injection-molding of polylactide with chain-extender. Materials Science and Engineering: C, 29(4), 1258-1265. doi:10.1016/j.msec.2008.10.027

Singh, S., Ghosh, A. K., Maiti, S. N., Raha, S., Gupta, R. K., & Bhattacharya, S. (2011). Morphology and rheological behavior of polylactic acid/clay nanocomposites. Polymer Engineering & Science, 52(1), 225-232. doi:10.1002/pen.22074

B., A., Suin, S., & Khatua, B. B. (2014). Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydrate Polymers, 110, 430-439. doi:10.1016/j.carbpol.2014.04.024

Pluta, M., Jeszka, J. K., & Boiteux, G. (2007). Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties. European Polymer Journal, 43(7), 2819-2835. doi:10.1016/j.eurpolymj.2007.04.009

Paul, M.-A., Delcourt, C., Alexandre, M., Degée, P., Monteverde, F., & Dubois, P. (2005). Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polymer Degradation and Stability, 87(3), 535-542. doi:10.1016/j.polymdegradstab.2004.10.011

Palsikowski, P. A., Kuchnier, C. N., Pinheiro, I. F., & Morales, A. R. (2017). Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender. Journal of Polymers and the Environment, 26(1), 330-341. doi:10.1007/s10924-017-0951-3

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record