- -

Velocities in a Centrifugal PAT Operation: Experiments and CFD Analyses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Velocities in a Centrifugal PAT Operation: Experiments and CFD Analyses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Simao, M es_ES
dc.contributor.author Pérez-Sánchez, Modesto es_ES
dc.contributor.author Carraveta, Armando es_ES
dc.contributor.author López Jiménez, Petra Amparo es_ES
dc.contributor.author Ramos, Helena M. es_ES
dc.date.accessioned 2020-04-27T05:55:25Z
dc.date.available 2020-04-27T05:55:25Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141521
dc.description.abstract [EN] Velocity profiles originated by a pump as turbine (PAT) were measured using an ultrasonic doppler velocimetry (UDV). PAT behavior is influenced by the velocity data. The effect of the rotational speed and the associated flow velocity variations were investigated. This research focuses, particularly, on the velocity profiles achieved for different rotational speeds and discharge values along the impeller since that is where the available hydraulic power is transformed into the mechanical power. Comparisons were made between experimental test results and computational fluid dynamics (CFD) simulations. The used CFD model was calibrated and validated using the same conditions as the experimental facility. The numerical simulations showed good approximation with the velocity measurements for different cross-sections along the PAT system. The application of this CFD numerical model and experimental tests contributed to better understanding the system behavior and to reach the best efficiency operating conditions. Improvements in the knowledge about the hydrodynamic flow behavior associated with the velocity triangles contribute to improvements in the PAT concept and operation. es_ES
dc.description.sponsorship The authors wish to thank to the project Reducing Energy Dependency in Atlantic Area Water Networks (REDAWN) EAPA_198/2016 from INTERREG Atlantic Area Programme 2014-2020 and CERIS (CEHIDRO-IST) and the Hydraulic Laboratory, for the support in the conceptual developments and the experiments on PATs. The authors also thank the program to support the academic career of the faculty of the Universitat Politecnica de Valencia 2016/2017 in the project "Maximization of the global efficiency in PATs in laboratory facility" of the second author. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Fluids es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Velocity Profiles es_ES
dc.subject PAT es_ES
dc.subject CFD Analyses es_ES
dc.subject Ultrasonic Doppler Velocimetry (UDV) es_ES
dc.subject Experimental Tests es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Velocities in a Centrifugal PAT Operation: Experiments and CFD Analyses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/fluids3010003 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IST//EAPA_198%2F2016/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Interreg//EAPA_198%2F2016/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Simao, M.; Pérez-Sánchez, M.; Carraveta, A.; López Jiménez, PA.; Ramos, HM. (2018). Velocities in a Centrifugal PAT Operation: Experiments and CFD Analyses. Fluids. 3(1):1-21. https://doi.org/10.3390/fluids3010003 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/fluids3010003 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2311-5521 es_ES
dc.relation.pasarela S\349930 es_ES
dc.contributor.funder Interreg es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Instituto Superior Técnico, Universidade de Lisboa es_ES
dc.description.references Yang, S.-S., Derakhshan, S., & Kong, F.-Y. (2012). Theoretical, numerical and experimental prediction of pump as turbine performance. Renewable Energy, 48, 507-513. doi:10.1016/j.renene.2012.06.002 es_ES
dc.description.references Coelho, B., & Andrade-Campos, A. (2014). Efficiency achievement in water supply systems—A review. Renewable and Sustainable Energy Reviews, 30, 59-84. doi:10.1016/j.rser.2013.09.010 es_ES
dc.description.references Ramos, H. M., Mello, M., & De, P. K. (2010). Clean power in water supply systems as a sustainable solution: from planning to practical implementation. Water Supply, 10(1), 39-49. doi:10.2166/ws.2010.720 es_ES
dc.description.references Kaunda, C. S., Kimambo, C. Z., & Nielsen, T. K. (2014). A technical discussion on microhydropower technology and its turbines. Renewable and Sustainable Energy Reviews, 35, 445-459. doi:10.1016/j.rser.2014.04.035 es_ES
dc.description.references Pérez García, J., Cortés Marco, A., & Nevado Santos, S. (2010). Use of Centrifugal Pumps Operating as Turbines for Energy Recovery in Water Distribution Networks. Two Case Study. Advanced Materials Research, 107, 87-92. doi:10.4028/www.scientific.net/amr.107.87 es_ES
dc.description.references Jain, S. V., & Patel, R. N. (2014). Investigations on pump running in turbine mode: A review of the state-of-the-art. Renewable and Sustainable Energy Reviews, 30, 841-868. doi:10.1016/j.rser.2013.11.030 es_ES
dc.description.references Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2017). Energy Recovery in Existing Water Networks: Towards Greater Sustainability. Water, 9(2), 97. doi:10.3390/w9020097 es_ES
dc.description.references Mesquita, A. L. A., & Ciocan, G. D. (1999). Experimental analysis of the flow between stay and guide vanes of a pump-turbine in pumping mode. Journal of the Brazilian Society of Mechanical Sciences, 21(4), 580-588. doi:10.1590/s0100-73861999000400002 es_ES
dc.description.references Ramos, H. M., Simão, M., & Borga, A. (2013). Experiments and CFD Analyses for a New Reaction Microhydro Propeller with Five Blades. Journal of Energy Engineering, 139(2), 109-117. doi:10.1061/(asce)ey.1943-7897.0000096 es_ES
dc.description.references Wang, B., & Hellmann, D.-H. (1996). Turbulent 3D Flows near the Impeller of a Mixed-Flow Pump. Hydraulic Machinery and Cavitation, 1044-1052. doi:10.1007/978-94-010-9385-9_106 es_ES
dc.description.references Ramos, H., & Borga, A. (1999). Pumps as turbines: an unconventional solution to energy production. Urban Water, 1(3), 261-263. doi:10.1016/s1462-0758(00)00016-9 es_ES
dc.description.references Nataraj, M., & Ragoth Singh, R. (2013). Analyzing pump impeller for performance evaluation using RSM and CFD. Desalination and Water Treatment, 52(34-36), 6822-6831. doi:10.1080/19443994.2013.818924 es_ES
dc.description.references Castro, L., Urquiza, G., Adamkowski, A., & Reggio, M. (2011). Experimental and Numerical Simulations Predictions Comparison of Power and Efficiency in Hydraulic Turbine. Modelling and Simulation in Engineering, 2011, 1-8. doi:10.1155/2011/146054 es_ES
dc.description.references Abilgaziyev, A., Nogerbek, N., & Rojas-Solórzano, L. (2015). Design Optimization of an Oil-Air Catch Can Separation System. Journal of Transportation Technologies, 05(04), 247-262. doi:10.4236/jtts.2015.54023 es_ES
dc.description.references Derakhshan, S., & Nourbakhsh, A. (2008). Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds. Experimental Thermal and Fluid Science, 32(3), 800-807. doi:10.1016/j.expthermflusci.2007.10.004 es_ES
dc.description.references Pérez-Sánchez, M., Simão, M., López-Jiménez, P., & Ramos, H. (2017). CFD Analyses and Experiments in a PAT Modeling: Pressure Variation and System Efficiency. Fluids, 2(4), 51. doi:10.3390/fluids2040051 es_ES
dc.description.references Simão, M., Mora-Rodriguez, J., & Ramos, H. M. (2016). Computational dynamic models and experiments in the fluid–structure interaction of pipe systems. Canadian Journal of Civil Engineering, 43(1), 60-72. doi:10.1139/cjce-2015-0253 es_ES
dc.description.references Ramos, H., & Beta⁁mio de Almeida, A. (2002). Parametric Analysis of Water-Hammer Effects in Small Hydro Schemes. Journal of Hydraulic Engineering, 128(7), 689-696. doi:10.1061/(asce)0733-9429(2002)128:7(689) es_ES
dc.description.references Nautiyal, H., Varun, & Kumar, A. (2010). Reverse running pumps analytical, experimental and computational study: A review. Renewable and Sustainable Energy Reviews, 14(7), 2059-2067. doi:10.1016/j.rser.2010.04.006 es_ES
dc.description.references Eisele, K., Zhang, Z., Casey, M. V., Gu¨lich, J., & Schachenmann, A. (1997). Flow Analysis in a Pump Diffuser—Part 1: LDA and PTV Measurements of the Unsteady Flow. Journal of Fluids Engineering, 119(4), 968-977. doi:10.1115/1.2819525 es_ES
dc.description.references Ramos, H., & Almeida, A. B. (2001). Dynamic orifice model on waterhammer analysis of high or medium heads of small hydropower schemes. Journal of Hydraulic Research, 39(4), 429-436. doi:10.1080/00221680109499847 es_ES
dc.description.references Su, X., Huang, S., Zhang, X., & Yang, S. (2016). Numerical research on unsteady flow rate characteristics of pump as turbine. Renewable Energy, 94, 488-495. doi:10.1016/j.renene.2016.03.092 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem