- -

Velocities in a Centrifugal PAT Operation: Experiments and CFD Analyses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Velocities in a Centrifugal PAT Operation: Experiments and CFD Analyses

Mostrar el registro completo del ítem

Simao, M.; Pérez-Sánchez, M.; Carraveta, A.; López Jiménez, PA.; Ramos, HM. (2018). Velocities in a Centrifugal PAT Operation: Experiments and CFD Analyses. Fluids. 3(1):1-21. https://doi.org/10.3390/fluids3010003

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141521

Ficheros en el ítem

Metadatos del ítem

Título: Velocities in a Centrifugal PAT Operation: Experiments and CFD Analyses
Autor: Simao, M Pérez-Sánchez, Modesto Carraveta, Armando López Jiménez, Petra Amparo Ramos, Helena M.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Velocity profiles originated by a pump as turbine (PAT) were measured using an ultrasonic doppler velocimetry (UDV). PAT behavior is influenced by the velocity data. The effect of the rotational speed and the associated ...[+]
Palabras clave: Velocity Profiles , PAT , CFD Analyses , Ultrasonic Doppler Velocimetry (UDV) , Experimental Tests
Derechos de uso: Reconocimiento (by)
Fuente:
Fluids. (eissn: 2311-5521 )
DOI: 10.3390/fluids3010003
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/fluids3010003
Código del Proyecto:
info:eu-repo/grantAgreement/IST//EAPA_198%2F2016/
info:eu-repo/grantAgreement/Interreg//EAPA_198%2F2016/
Agradecimientos:
The authors wish to thank to the project Reducing Energy Dependency in Atlantic Area Water Networks (REDAWN) EAPA_198/2016 from INTERREG Atlantic Area Programme 2014-2020 and CERIS (CEHIDRO-IST) and the Hydraulic Laboratory, ...[+]
Tipo: Artículo

References

Yang, S.-S., Derakhshan, S., & Kong, F.-Y. (2012). Theoretical, numerical and experimental prediction of pump as turbine performance. Renewable Energy, 48, 507-513. doi:10.1016/j.renene.2012.06.002

Coelho, B., & Andrade-Campos, A. (2014). Efficiency achievement in water supply systems—A review. Renewable and Sustainable Energy Reviews, 30, 59-84. doi:10.1016/j.rser.2013.09.010

Ramos, H. M., Mello, M., & De, P. K. (2010). Clean power in water supply systems as a sustainable solution: from planning to practical implementation. Water Supply, 10(1), 39-49. doi:10.2166/ws.2010.720 [+]
Yang, S.-S., Derakhshan, S., & Kong, F.-Y. (2012). Theoretical, numerical and experimental prediction of pump as turbine performance. Renewable Energy, 48, 507-513. doi:10.1016/j.renene.2012.06.002

Coelho, B., & Andrade-Campos, A. (2014). Efficiency achievement in water supply systems—A review. Renewable and Sustainable Energy Reviews, 30, 59-84. doi:10.1016/j.rser.2013.09.010

Ramos, H. M., Mello, M., & De, P. K. (2010). Clean power in water supply systems as a sustainable solution: from planning to practical implementation. Water Supply, 10(1), 39-49. doi:10.2166/ws.2010.720

Kaunda, C. S., Kimambo, C. Z., & Nielsen, T. K. (2014). A technical discussion on microhydropower technology and its turbines. Renewable and Sustainable Energy Reviews, 35, 445-459. doi:10.1016/j.rser.2014.04.035

Pérez García, J., Cortés Marco, A., & Nevado Santos, S. (2010). Use of Centrifugal Pumps Operating as Turbines for Energy Recovery in Water Distribution Networks. Two Case Study. Advanced Materials Research, 107, 87-92. doi:10.4028/www.scientific.net/amr.107.87

Jain, S. V., & Patel, R. N. (2014). Investigations on pump running in turbine mode: A review of the state-of-the-art. Renewable and Sustainable Energy Reviews, 30, 841-868. doi:10.1016/j.rser.2013.11.030

Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2017). Energy Recovery in Existing Water Networks: Towards Greater Sustainability. Water, 9(2), 97. doi:10.3390/w9020097

Mesquita, A. L. A., & Ciocan, G. D. (1999). Experimental analysis of the flow between stay and guide vanes of a pump-turbine in pumping mode. Journal of the Brazilian Society of Mechanical Sciences, 21(4), 580-588. doi:10.1590/s0100-73861999000400002

Ramos, H. M., Simão, M., & Borga, A. (2013). Experiments and CFD Analyses for a New Reaction Microhydro Propeller with Five Blades. Journal of Energy Engineering, 139(2), 109-117. doi:10.1061/(asce)ey.1943-7897.0000096

Wang, B., & Hellmann, D.-H. (1996). Turbulent 3D Flows near the Impeller of a Mixed-Flow Pump. Hydraulic Machinery and Cavitation, 1044-1052. doi:10.1007/978-94-010-9385-9_106

Ramos, H., & Borga, A. (1999). Pumps as turbines: an unconventional solution to energy production. Urban Water, 1(3), 261-263. doi:10.1016/s1462-0758(00)00016-9

Nataraj, M., & Ragoth Singh, R. (2013). Analyzing pump impeller for performance evaluation using RSM and CFD. Desalination and Water Treatment, 52(34-36), 6822-6831. doi:10.1080/19443994.2013.818924

Castro, L., Urquiza, G., Adamkowski, A., & Reggio, M. (2011). Experimental and Numerical Simulations Predictions Comparison of Power and Efficiency in Hydraulic Turbine. Modelling and Simulation in Engineering, 2011, 1-8. doi:10.1155/2011/146054

Abilgaziyev, A., Nogerbek, N., & Rojas-Solórzano, L. (2015). Design Optimization of an Oil-Air Catch Can Separation System. Journal of Transportation Technologies, 05(04), 247-262. doi:10.4236/jtts.2015.54023

Derakhshan, S., & Nourbakhsh, A. (2008). Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds. Experimental Thermal and Fluid Science, 32(3), 800-807. doi:10.1016/j.expthermflusci.2007.10.004

Pérez-Sánchez, M., Simão, M., López-Jiménez, P., & Ramos, H. (2017). CFD Analyses and Experiments in a PAT Modeling: Pressure Variation and System Efficiency. Fluids, 2(4), 51. doi:10.3390/fluids2040051

Simão, M., Mora-Rodriguez, J., & Ramos, H. M. (2016). Computational dynamic models and experiments in the fluid–structure interaction of pipe systems. Canadian Journal of Civil Engineering, 43(1), 60-72. doi:10.1139/cjce-2015-0253

Ramos, H., & Beta⁁mio de Almeida, A. (2002). Parametric Analysis of Water-Hammer Effects in Small Hydro Schemes. Journal of Hydraulic Engineering, 128(7), 689-696. doi:10.1061/(asce)0733-9429(2002)128:7(689)

Nautiyal, H., Varun, & Kumar, A. (2010). Reverse running pumps analytical, experimental and computational study: A review. Renewable and Sustainable Energy Reviews, 14(7), 2059-2067. doi:10.1016/j.rser.2010.04.006

Eisele, K., Zhang, Z., Casey, M. V., Gu¨lich, J., & Schachenmann, A. (1997). Flow Analysis in a Pump Diffuser—Part 1: LDA and PTV Measurements of the Unsteady Flow. Journal of Fluids Engineering, 119(4), 968-977. doi:10.1115/1.2819525

Ramos, H., & Almeida, A. B. (2001). Dynamic orifice model on waterhammer analysis of high or medium heads of small hydropower schemes. Journal of Hydraulic Research, 39(4), 429-436. doi:10.1080/00221680109499847

Su, X., Huang, S., Zhang, X., & Yang, S. (2016). Numerical research on unsteady flow rate characteristics of pump as turbine. Renewable Energy, 94, 488-495. doi:10.1016/j.renene.2016.03.092

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem