- -

Existence of Picard operator and iterated function system

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Existence of Picard operator and iterated function system

Show simple item record

Files in this item

dc.contributor.author Garg, Medha es_ES
dc.contributor.author Chandok, Sumit es_ES
dc.date.accessioned 2020-04-27T09:18:29Z
dc.date.available 2020-04-27T09:18:29Z
dc.date.issued 2020-04-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/141559
dc.description.abstract [EN] In this paper, we define weak θm− contraction mappings and give a new class of Picard operators for such class of mappings on a complete metric space. Also, we obtain some new results on the existence and uniqueness of attractor for a weak θm− iterated multifunction system. Moreover, we introduce (α, β, θm)− contractions using cyclic (α, β)− admissible mappings and obtain some results for such class of mappings without the continuity of the operator. We also provide an illustrative example to support the concepts and results proved herein. es_ES
dc.description.sponsorship The authors are thankful to the learned referee for valuable suggestions. The second author is also thankful to AISTDF, DST for the research grant vide project No. CRD/2018/000017. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation DST/CRD/2018/000017 es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Picard operator es_ES
dc.subject Fixed point es_ES
dc.subject Weak θm− contraction es_ES
dc.subject Iterated function system es_ES
dc.title Existence of Picard operator and iterated function system es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2020.11992
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Garg, M.; Chandok, S. (2020). Existence of Picard operator and iterated function system. Applied General Topology. 21(1):57-70. https://doi.org/10.4995/agt.2020.11992 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2020.11992 es_ES
dc.description.upvformatpinicio 57 es_ES
dc.description.upvformatpfin 70 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\11992 es_ES
dc.contributor.funder Department of Science and Technology, India es_ES


This item appears in the following Collection(s)

Show simple item record