- -

Existence of Picard operator and iterated function system

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Existence of Picard operator and iterated function system

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garg, Medha es_ES
dc.contributor.author Chandok, Sumit es_ES
dc.date.accessioned 2020-04-27T09:18:29Z
dc.date.available 2020-04-27T09:18:29Z
dc.date.issued 2020-04-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/141559
dc.description.abstract [EN] In this paper, we define weak θm− contraction mappings and give a new class of Picard operators for such class of mappings on a complete metric space. Also, we obtain some new results on the existence and uniqueness of attractor for a weak θm− iterated multifunction system. Moreover, we introduce (α, β, θm)− contractions using cyclic (α, β)− admissible mappings and obtain some results for such class of mappings without the continuity of the operator. We also provide an illustrative example to support the concepts and results proved herein. es_ES
dc.description.sponsorship The authors are thankful to the learned referee for valuable suggestions. The second author is also thankful to AISTDF, DST for the research grant vide project No. CRD/2018/000017. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Picard operator es_ES
dc.subject Fixed point es_ES
dc.subject Weak θm− contraction es_ES
dc.subject Iterated function system es_ES
dc.title Existence of Picard operator and iterated function system es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2020.11992
dc.relation.projectID info:eu-repo/grantAgreement/DST//CRD%2F2018%2F000017/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Garg, M.; Chandok, S. (2020). Existence of Picard operator and iterated function system. Applied General Topology. 21(1):57-70. https://doi.org/10.4995/agt.2020.11992 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2020.11992 es_ES
dc.description.upvformatpinicio 57 es_ES
dc.description.upvformatpfin 70 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\11992 es_ES
dc.contributor.funder Department of Science and Technology, Ministry of Science and Technology, India es_ES
dc.description.references S. Alizadeh, F. Moradlou and P. Salimi, Some fixed point results for (α, β) − (ψ, φ)- contractive mappings, Filomat 28 (2014), 635-647. https://doi.org/10.2298/FIL1403635A es_ES
dc.description.references M. F. Barnsley, Fractals Everywhere, Revised with the Assistance of and with a Foreword by Hawley Rising, III. Academic Press Professional, Boston (1993). es_ES
dc.description.references R. M. T. Bianchini, Su un problema di S. Reich riguardante la teoria dei punti fissi, Boll. Un. Mat. Ital. 5 (1972), 103-108. es_ES
dc.description.references E. L. Fuster, A. Petrusel and J. C. Yao, Iterated function system and well-posedness, Chaos Sol. Fract. 41 (2009), 1561-1568. https://doi.org/10.1016/j.chaos.2008.06.019 es_ES
dc.description.references R. H. Haghi, Sh. Rezapour and N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Anal. 74 (2011), 1799-1803. https://doi.org/10.1016/j.na.2010.10.052 es_ES
dc.description.references N. Hussain, V. Parvaneh, B. Samet and C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2015, 185 (2015). https://doi.org/10.1186/s13663-015-0433-z es_ES
dc.description.references J. E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J. 30, no. 5 (1981), 713-747. https://doi.org/10.1512/iumj.1981.30.30055 es_ES
dc.description.references M. Imdad, W. M. Alfaqih and I. A. Khan, Weak θ−contractions and some fixed point results with applications to fractal theory, Adv. Diff. Eq. 439 (2018). https://doi.org/10.1186/s13662-018-1900-8 es_ES
dc.description.references M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 38 (2014). https://doi.org/10.1186/1029-242X-2014-38 es_ES
dc.description.references M. Radenovic and S. Chandok, Simulation type functions and coincidence points, Filomat, 32, no. 1 (2018), 141-147. https://doi.org/10.2298/FIL1801141R es_ES
dc.description.references B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. American Math. Soc. 226 (1977), 257-290. https://doi.org/10.1090/S0002-9947-1977-0433430-4 es_ES
dc.description.references I. A. Rus, Picard operators and applications, Sci. Math. Jpn. 58, no. 1 (2003), 191-219. es_ES
dc.description.references I. A. Rus, A. Petrusel and G. Petrusel, Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008. es_ES
dc.description.references N. A. Secelean, Countable Iterated Function Systems, LAP LAMBERT Academic Publishing (2013). https://doi.org/10.1186/1687-1812-2013-277 es_ES
dc.description.references N. A. Secelean, Iterated function systems consisting of F-contractions, Fixed Point Theory Appl. 2013, 277 (2013). https://doi.org/10.1186/1687-1812-2013-277 es_ES
dc.description.references V. M. Sehgal, On fixed and periodic points for a class of mappings, J. London Math. Soc. 5 (1972), 571-576. https://doi.org/10.1112/jlms/s2-5.3.571 es_ES
dc.description.references S.-A. Urziceanu, Alternative charaterizations of AGIFSs having attactors, Fixed Point Theory 20 (2019), 729-740. https://doi.org/10.24193/fpt-ro.2019.2.48 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem