- -

Mapping molecular binding by means of conformational dynamics measurements

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mapping molecular binding by means of conformational dynamics measurements

Mostrar el registro completo del ítem

Do Nascimento, NM.; Juste-Dolz, AM.; Bueno, PR.; Monzó, IS.; Tejero, R.; López-Paz, JL.; Maquieira Catala, A.... (2018). Mapping molecular binding by means of conformational dynamics measurements. RSC Advances. 8(2):867-876. https://doi.org/10.1039/c7ra10617c

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141937

Ficheros en el ítem

Metadatos del ítem

Título: Mapping molecular binding by means of conformational dynamics measurements
Autor: Do Nascimento, Noelle M. Juste-Dolz, Augusto Miguel Bueno, Paulo Roberto Monzó, Isidro S. Tejero, R. López-Paz, José Luis Maquieira Catala, Angel Morais, Sergi Giménez-Romero, David
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Fecha difusión:
Resumen:
[EN] Protein-protein interactions are key in virtually all biological processes. The study of these interactions and the interfaces that mediate them play a key role in the understanding of biological function. In particular, ...[+]
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
RSC Advances. (eissn: 2046-2069 )
DOI: 10.1039/c7ra10617c
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c7ra10617c
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2013-42914-R/ES/SERODIAGNOSTICO DE ENFERMEDADES AUTOINMUNES A TRAVES DE LA RED IDIOTIPO-ANTIIDIOTIPO. BASES Y APLICACION/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F040/ES/Estudio de estrategias fisico-químicas para el desarrollo de biosensores interferométricos en soportes interactivos de aplicación en clínica/
info:eu-repo/grantAgreement/MINECO//CTQ2013-45875-R/ES/BIOSENSADO EN SOPORTES INTERACTIVOS CON PROPIEDADES INTERFEROMETRICAS PARA APLICACIONES CLINICAS. DEMOSTRACION EN FARMACOGENETICA Y ALERGIAS MEDICAMENTOSAS/
Agradecimientos:
Financial support from the Generalitat Valenciana (GVA-PROMETEO/2014/040), the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (CTQ2013-45875-R and CTQ2013-42914-R) is acknowledged.[+]
Tipo: Artículo

References

Zhou, M., Li, Q., & Wang, R. (2016). Current Experimental Methods for Characterizing Protein-Protein Interactions. ChemMedChem, 11(8), 738-756. doi:10.1002/cmdc.201500495

Skwarczynska, M., & Ottmann, C. (2015). Protein–protein interactions as drug targets. Future Medicinal Chemistry, 7(16), 2195-2219. doi:10.4155/fmc.15.138

Milroy, L.-G., Grossmann, T. N., Hennig, S., Brunsveld, L., & Ottmann, C. (2014). Modulators of Protein–Protein Interactions. Chemical Reviews, 114(9), 4695-4748. doi:10.1021/cr400698c [+]
Zhou, M., Li, Q., & Wang, R. (2016). Current Experimental Methods for Characterizing Protein-Protein Interactions. ChemMedChem, 11(8), 738-756. doi:10.1002/cmdc.201500495

Skwarczynska, M., & Ottmann, C. (2015). Protein–protein interactions as drug targets. Future Medicinal Chemistry, 7(16), 2195-2219. doi:10.4155/fmc.15.138

Milroy, L.-G., Grossmann, T. N., Hennig, S., Brunsveld, L., & Ottmann, C. (2014). Modulators of Protein–Protein Interactions. Chemical Reviews, 114(9), 4695-4748. doi:10.1021/cr400698c

Arkin, M. R., Tang, Y., & Wells, J. A. (2014). Small-Molecule Inhibitors of Protein-Protein Interactions: Progressing toward the Reality. Chemistry & Biology, 21(9), 1102-1114. doi:10.1016/j.chembiol.2014.09.001

Talasaz, A. H., Nemat-Gorgani, M., Liu, Y., Stahl, P., Dutton, R. W., Ronaghi, M., & Davis, R. W. (2006). Prediction of protein orientation upon immobilization on biological and nonbiological surfaces. Proceedings of the National Academy of Sciences, 103(40), 14773-14778. doi:10.1073/pnas.0605841103

Cui, H., Pashuck, E. T., Velichko, Y. S., Weigand, S. J., Cheetham, A. G., Newcomb, C. J., & Stupp, S. I. (2009). Spontaneous and X-ray-Triggered Crystallization at Long Range in Self-Assembling Filament Networks. Science, 327(5965), 555-559. doi:10.1126/science.1182340

Ye, S., Li, H., Wei, F., Jasensky, J., Boughton, A. P., Yang, P., & Chen, Z. (2012). Observing a Model Ion Channel Gating Action in Model Cell Membranes in Real Time in Situ: Membrane Potential Change Induced Alamethicin Orientation Change. Journal of the American Chemical Society, 134(14), 6237-6243. doi:10.1021/ja2110784

Chen, Y.-S., Hong, M.-Y., & Huang, G. S. (2012). A protein transistor made of an antibody molecule and two gold nanoparticles. Nature Nanotechnology, 7(3), 197-203. doi:10.1038/nnano.2012.7

Zhang, G., Li, J., Cui, P., Wang, T., Jiang, J., & Prezhdo, O. V. (2017). Two-Dimensional Linear Dichroism Spectroscopy for Identifying Protein Orientation and Secondary Structure Composition. The Journal of Physical Chemistry Letters, 8(5), 1031-1037. doi:10.1021/acs.jpclett.7b00311

Ding, B., Panahi, A., Ho, J.-J., Laaser, J. E., Brooks, C. L., Zanni, M. T., & Chen, Z. (2015). Probing Site-Specific Structural Information of Peptides at Model Membrane Interface In Situ. Journal of the American Chemical Society, 137(32), 10190-10198. doi:10.1021/jacs.5b04024

Consani, C., Aubock, G., van Mourik, F., & Chergui, M. (2013). Ultrafast Tryptophan-to-Heme Electron Transfer in Myoglobins Revealed by UV 2D Spectroscopy. Science, 339(6127), 1586-1589. doi:10.1126/science.1230758

Callaway, E. (2015). The revolution will not be crystallized: a new method sweeps through structural biology. Nature, 525(7568), 172-174. doi:10.1038/525172a

Pirich, C. L., de Freitas, R. A., Torresi, R. M., Picheth, G. F., & Sierakowski, M. R. (2017). Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection. Biosensors and Bioelectronics, 92, 47-53. doi:10.1016/j.bios.2017.01.068

McCubbin, G. A., Praporski, S., Piantavigna, S., Knappe, D., Hoffmann, R., Bowie, J. H., … Martin, L. L. (2010). QCM-D fingerprinting of membrane-active peptides. European Biophysics Journal, 40(4), 437-446. doi:10.1007/s00249-010-0652-5

Li, X., Song, S., Shuai, Q., Pei, Y., Aastrup, T., Pei, Y., & Pei, Z. (2015). Real-time and label-free analysis of binding thermodynamics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a QCM biosensor. Scientific Reports, 5(1). doi:10.1038/srep14066

Escorihuela, J., González-Martínez, M. Á., López-Paz, J. L., Puchades, R., Maquieira, Á., & Gimenez-Romero, D. (2014). Dual-Polarization Interferometry: A Novel Technique To Light up the Nanomolecular World. Chemical Reviews, 115(1), 265-294. doi:10.1021/cr5002063

Mallery, D. L., McEwan, W. A., Bidgood, S. R., Towers, G. J., Johnson, C. M., & James, L. C. (2010). Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proceedings of the National Academy of Sciences, 107(46), 19985-19990. doi:10.1073/pnas.1014074107

McEwan, W. A., Tam, J. C. H., Watkinson, R. E., Bidgood, S. R., Mallery, D. L., & James, L. C. (2013). Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nature Immunology, 14(4), 327-336. doi:10.1038/ni.2548

Keeble, A. H., Khan, Z., Forster, A., & James, L. C. (2008). TRIM21 is an IgG receptor that is structurally, thermodynamically, and kinetically conserved. Proceedings of the National Academy of Sciences, 105(16), 6045-6050. doi:10.1073/pnas.0800159105

Petri, M., Orbai, A.-M., Alarcón, G. S., Gordon, C., Merrill, J. T., Fortin, P. R., … Nived, O. (2012). Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis & Rheumatism, 64(8), 2677-2686. doi:10.1002/art.34473

Wu, S., & Zhang, Y. (2007). LOMETS: A local meta-threading-server for protein structure prediction. Nucleic Acids Research, 35(10), 3375-3382. doi:10.1093/nar/gkm251

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., … Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1), W252-W258. doi:10.1093/nar/gku340

Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., & Schwede, T. (2008). Protein structure homology modeling using SWISS-MODEL workspace. Nature Protocols, 4(1), 1-13. doi:10.1038/nprot.2008.197

Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2005). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195-201. doi:10.1093/bioinformatics/bti770

Do Nascimento, N. M., Juste-Dolz, A., Grau-García, E., Román-Ivorra, J. A., Puchades, R., Maquieira, A., … Gimenez-Romero, D. (2017). Label-free piezoelectric biosensor for prognosis and diagnosis of Systemic Lupus Erythematosus. Biosensors and Bioelectronics, 90, 166-173. doi:10.1016/j.bios.2016.11.004

Kuboshima, M., Shimada, H., Liu, T.-L., Nomura, F., Takiguchi, M., Hiwasa, T., & Ochiai, T. (2006). Presence of serum tripartite motif-containing 21 antibodies in patients with esophageal squamous cell carcinoma. Cancer Science, 97(5), 380-386. doi:10.1111/j.1349-7006.2006.00192.x

Sanchez, J. G., Okreglicka, K., Chandrasekaran, V., Welker, J. M., Sundquist, W. I., & Pornillos, O. (2014). The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer. Proceedings of the National Academy of Sciences, 111(7), 2494-2499. doi:10.1073/pnas.1318962111

Biris, N., Yang, Y., Taylor, A. B., Tomashevski, A., Guo, M., Hart, P. J., … Ivanov, D. N. (2012). Structure of the rhesus monkey TRIM5  PRYSPRY domain, the HIV capsid recognition module. Proceedings of the National Academy of Sciences, 109(33), 13278-13283. doi:10.1073/pnas.1203536109

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem