- -

Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean

Mostrar el registro completo del ítem

Acevedo-Barrios, R.; Bertel-Sevilla, A.; Alonso Molina, JL.; Olivero-Verbel, J. (2019). Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean. International Journal of Microbiology. 2019:1-13. https://doi.org/10.1155/2019/6981865

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141954

Ficheros en el ítem

Metadatos del ítem

Título: Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean
Autor: Acevedo-Barrios, Rosa Bertel-Sevilla, Angela Alonso Molina, José Luís Olivero-Verbel, Jesus
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Fecha difusión:
Resumen:
[EN] Perchlorate (ClO4¿) has several industrial applications and is frequently detected in environmental matrices at relevant concentrations to human health. Currently, perchlorate-degrading bacteria are promising strategies ...[+]
Palabras clave: Perchlorate degrading bacteria , Hypersaline soils , Salinovibrio , Bacillus
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Microbiology. (issn: 1687-918X )
DOI: 10.1155/2019/6981865
Editorial:
Hindawi
Versión del editor: https://doi.org/10.1155/2019/6981865
Código del Proyecto:
info:eu-repo/grantAgreement/Universidad de Cartagena//RC-758-2011%2F1107-521-29360/
Agradecimientos:
This research received support from the Vice Presidency of Research, University of Cartagena; and Colciencias-University of Cartagena (Grant: RC-758-2011/1107-521-29360).
Tipo: Artículo

References

Cole-Dai, J., Peterson, K. M., Kennedy, J. A., Cox, T. S., & Ferris, D. G. (2018). Evidence of Influence of Human Activities and Volcanic Eruptions on Environmental Perchlorate from a 300-Year Greenland Ice Core Record. Environmental Science & Technology, 52(15), 8373-8380. doi:10.1021/acs.est.8b01890

Acevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2018). Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research, 25(14), 13697-13708. doi:10.1007/s11356-018-1565-6

Maffini, M. V., Trasande, L., & Neltner, T. G. (2016). Perchlorate and Diet: Human Exposures, Risks, and Mitigation Strategies. Current Environmental Health Reports, 3(2), 107-117. doi:10.1007/s40572-016-0090-3 [+]
Cole-Dai, J., Peterson, K. M., Kennedy, J. A., Cox, T. S., & Ferris, D. G. (2018). Evidence of Influence of Human Activities and Volcanic Eruptions on Environmental Perchlorate from a 300-Year Greenland Ice Core Record. Environmental Science & Technology, 52(15), 8373-8380. doi:10.1021/acs.est.8b01890

Acevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2018). Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research, 25(14), 13697-13708. doi:10.1007/s11356-018-1565-6

Maffini, M. V., Trasande, L., & Neltner, T. G. (2016). Perchlorate and Diet: Human Exposures, Risks, and Mitigation Strategies. Current Environmental Health Reports, 3(2), 107-117. doi:10.1007/s40572-016-0090-3

Knight, B. A., Shields, B. M., He, X., Pearce, E. N., Braverman, L. E., Sturley, R., & Vaidya, B. (2018). Effect of perchlorate and thiocyanate exposure on thyroid function of pregnant women from South-West England: a cohort study. Thyroid Research, 11(1). doi:10.1186/s13044-018-0053-x

Smith, P. N. (s. f.). The Ecotoxicology of Perchlorate in the Environment. Perchlorate, 153-168. doi:10.1007/0-387-31113-0_7

Steinmaus, C., Pearl, M., Kharrazi, M., Blount, B. C., Miller, M. D., Pearce, E. N., … Liaw, J. (2016). Thyroid Hormones and Moderate Exposure to Perchlorate during Pregnancy in Women in Southern California. Environmental Health Perspectives, 124(6), 861-867. doi:10.1289/ehp.1409614

Ghosh, A., Pakshirajan, K., Ghosh, P. K., & Sahoo, N. K. (2011). Perchlorate degradation using an indigenous microbial consortium predominantly Burkholderia sp. Journal of Hazardous Materials, 187(1-3), 133-139. doi:10.1016/j.jhazmat.2010.12.130

Nerenberg, R., Rittmann, B. E., & Najm, I. (2002). Perchlorate reduction in a HYDROGEN-BASED MEMBRANE-BIOFILM REACTOR. Journal - American Water Works Association, 94(11), 103-114. doi:10.1002/j.1551-8833.2002.tb10234.x

Xu, J., & Logan, B. E. (2003). Measurement of chlorite dismutase activities in perchlorate respiring bacteria. Journal of Microbiological Methods, 54(2), 239-247. doi:10.1016/s0167-7012(03)00058-7

Logan, B. E., Wu, J., & Unz, R. F. (2001). Biological Perchlorate Reduction in High-Salinity Solutions. Water Research, 35(12), 3034-3038. doi:10.1016/s0043-1354(01)00013-6

Matsubara, T., Fujishima, K., Saltikov, C. W., Nakamura, S., & Rothschild, L. J. (2016). Earth analogues for past and future life on Mars: isolation of perchlorate resistant halophiles from Big Soda Lake. International Journal of Astrobiology, 16(3), 218-228. doi:10.1017/s1473550416000458

Okeke, B. C., Giblin, T., & Frankenberger, W. T. (2002). Reduction of perchlorate and nitrate by salt tolerant bacteria. Environmental Pollution, 118(3), 357-363. doi:10.1016/s0269-7491(01)00288-3

Vijaya Nadaraja, A., Gangadharan Puthiya Veetil, P., & Bhaskaran, K. (2012). Perchlorate reduction by an isolatedSerratia marcescensstrain under high salt and extreme pH. FEMS Microbiology Letters, 339(2), 117-121. doi:10.1111/1574-6968.12062

Murray, C. W., & Bolger, P. (2014). Environmental Contaminants: Perchlorate. Encyclopedia of Food Safety, 337-341. doi:10.1016/b978-0-12-378612-8.00200-6

Xu, J., Song, Y., Min, B., Steinberg, L., & Logan, B. E. (2003). Microbial Degradation of Perchlorate: Principles and Applications. Environmental Engineering Science, 20(5), 405-422. doi:10.1089/109287503768335904

Wang, O., & Coates, J. (2017). Biotechnological Applications of Microbial (Per)chlorate Reduction. Microorganisms, 5(4), 76. doi:10.3390/microorganisms5040076

Xiao, Y., & Roberts, D. J. (2013). Kinetics Analysis of a Salt-Tolerant Perchlorate-Reducing Bacterium: Effects of Sodium, Magnesium, and Nitrate. Environmental Science & Technology, 47(15), 8666-8673. doi:10.1021/es400835t

Nozawa-Inoue, M., Scow, K. M., & Rolston, D. E. (2005). Reduction of Perchlorate and Nitrate by Microbial Communities in Vadose Soil. Applied and Environmental Microbiology, 71(7), 3928-3934. doi:10.1128/aem.71.7.3928-3934.2005

Shimkets, L. J., & Rafiee, H. (1990). CsgA, an extracellular protein essential for Myxococcus xanthus development. Journal of Bacteriology, 172(9), 5299-5306. doi:10.1128/jb.172.9.5299-5306.1990

Acevedo-Barrios, R., Bertel-Sevilla, A., Alonso-Molina, J., & Olivero-Verbel, J. (2016). Perchlorate tolerant bacteria from saline environments at the Caribbean region of Colombia. Toxicology Letters, 259, S103. doi:10.1016/j.toxlet.2016.07.257

Iizuka, T., Tokura, M., Jojima, Y., Hiraishi, A., Yamanaka, S., & Fudou, R. (2006). Enrichment and Phylogenetic Analysis of Moderately Thermophilic Myxobacteria from Hot Springs in Japan. Microbes and Environments, 21(3), 189-199. doi:10.1264/jsme2.21.189

Wu, Z.-H., Jiang, D.-M., Li, P., & Li, Y.-Z. (2005). Exploring the diversity of myxobacteria in a soil niche by myxobacteria-specific primers and probes. Environmental Microbiology, 7(10), 1602-1610. doi:10.1111/j.1462-2920.2005.00852.x

Huang, X. (1999). CAP3: A DNA Sequence Assembly Program. Genome Research, 9(9), 868-877. doi:10.1101/gr.9.9.868

The neighbor-joining method: a new method for reconstructing phylogenetic trees. (1987). Molecular Biology and Evolution. doi:10.1093/oxfordjournals.molbev.a040454

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368-376. doi:10.1007/bf01734359

Fitch, W. M. (1971). Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Systematic Biology, 20(4), 406-416. doi:10.1093/sysbio/20.4.406

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. doi:10.1093/molbev/mst197

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. doi:10.1007/bf01731581

Felsenstein, J. (1985). CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP. Evolution, 39(4), 783-791. doi:10.1111/j.1558-5646.1985.tb00420.x

Albuquerque, L., Tiago, I., Taborda, M., Nobre, M. F., Verissimo, A., & da Costa, M. S. (2008). Bacillus isabeliae sp. nov., a halophilic bacterium isolated from a sea salt evaporation pond. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 58(1), 226-230. doi:10.1099/ijs.0.65217-0

Gholamian, F., Sheikh-Mohseni, M. A., & Salavati-Niasari, M. (2011). Highly selective determination of perchlorate by a novel potentiometric sensor based on a synthesized complex of copper. Materials Science and Engineering: C, 31(8), 1688-1691. doi:10.1016/j.msec.2011.07.017

Donachie, S. P., Bowman, J. P., & Alam, M. (2006). Nesiotobacter exalbescens gen. nov., sp. nov., a moderately thermophilic alphaproteobacterium from an Hawaiian hypersaline lake. International Journal of Systematic and Evolutionary Microbiology, 56(3), 563-567. doi:10.1099/ijs.0.63440-0

Ling, J., Zhang, G., Sun, H., Fan, Y., Ju, J., & Zhang, C. (2011). Isolation and characterization of a novel pyrene-degrading Bacillus vallismortis strain JY3A. Science of The Total Environment, 409(10), 1994-2000. doi:10.1016/j.scitotenv.2011.02.020

Romano, I., Gambacorta, A., Lama, L., Nicolaus, B., & Giordano, A. (2005). Salinivibrio costicola subsp. alcaliphilus subsp. nov., a haloalkaliphilic aerobe from Campania Region (Italy). Systematic and Applied Microbiology, 28(1), 34-42. doi:10.1016/j.syapm.2004.10.001

Ali Amoozegar, M., Zahra Fatemi, A., Reza Karbalaei-Heidari, H., & Reza Razavi, M. (2007). Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004. Microbiological Research, 162(4), 369-377. doi:10.1016/j.micres.2006.02.007

Dubert, J., Romalde, J. L., Prado, S., & Barja, J. L. (2016). Vibrio bivalvicida sp. nov., a novel larval pathogen for bivalve molluscs reared in a hatchery. Systematic and Applied Microbiology, 39(1), 8-13. doi:10.1016/j.syapm.2015.10.006

Paek, J., Shin, J. H., Shin, Y., Park, I.-S., Kim, H., Kook, J.-K., … Chang, Y.-H. (2016). Vibrio injenensis sp. nov., isolated from human clinical specimens. Antonie van Leeuwenhoek, 110(1), 145-152. doi:10.1007/s10482-016-0810-6

Kumar, P. S., Paulraj, M. G., Ignacimuthu, S., Al-Dhabi, N. A., & Sukumaran, D. (2017). IN VITRO ANTAGONISTIC ACTIVITY OF SOIL STREPTOMYCES COLLINUS DPR20 AGAINST BACTERIAL PATHOGENS. Journal of Microbiology, Biotechnology and Food Sciences, 7(3), 317-324. doi:10.15414/jmbfs.2017/18.7.3.317-324

Bruce, R. A., Achenbach, L. A., & Coates, J. D. (1999). Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environmental Microbiology, 1(4), 319-329. doi:10.1046/j.1462-2920.1999.00042.x

Waller, A. S., Cox, E. E., & Edwards, E. A. (2004). Perchlorate-reducing microorganisms isolated from contaminated sites. Environmental Microbiology, 6(5), 517-527. doi:10.1111/j.1462-2920.2004.00598.x

Chaudhuri, S. K., O’Connor, S. M., Gustavson, R. L., Achenbach, L. A., & Coates, J. D. (2002). Environmental Factors That Control Microbial Perchlorate Reduction. Applied and Environmental Microbiology, 68(9), 4425-4430. doi:10.1128/aem.68.9.4425-4430.2002

Liebensteiner, M. G., Oosterkamp, M. J., & Stams, A. J. M. (2015). Microbial respiration with chlorine oxyanions: diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms. Annals of the New York Academy of Sciences, 1365(1), 59-72. doi:10.1111/nyas.12806

Zhu, Y., Gao, N., Chu, W., Wang, S., & Xu, J. (2016). Bacterial reduction of highly concentrated perchlorate: Kinetics and influence of co-existing electron acceptors, temperature, pH and electron donors. Chemosphere, 148, 188-194. doi:10.1016/j.chemosphere.2015.10.130

Giblin, T., & Frankenberger, W. T. (2001). Perchlorate and nitrate reductase activity in the perchlorate-respiring bacterium perclace. Microbiological Research, 156(4), 311-315. doi:10.1078/0944-5013-00111

Sevda, S., Sreekishnan, T. R., Pous, N., Puig, S., & Pant, D. (2018). Bioelectroremediation of perchlorate and nitrate contaminated water: A review. Bioresource Technology, 255, 331-339. doi:10.1016/j.biortech.2018.02.005

Wang, C., Lippincott, L., & Meng, X. (2008). Kinetics of biological perchlorate reduction and pH effect. Journal of Hazardous Materials, 153(1-2), 663-669. doi:10.1016/j.jhazmat.2007.09.010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem