- -

Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Acevedo-Barrios, Rosa es_ES
dc.contributor.author Bertel-Sevilla, Angela es_ES
dc.contributor.author Alonso Molina, José Luís es_ES
dc.contributor.author Olivero-Verbel, Jesus es_ES
dc.date.accessioned 2020-04-29T07:04:42Z
dc.date.available 2020-04-29T07:04:42Z
dc.date.issued 2019-02-17 es_ES
dc.identifier.issn 1687-918X es_ES
dc.identifier.uri http://hdl.handle.net/10251/141954
dc.description.abstract [EN] Perchlorate (ClO4¿) has several industrial applications and is frequently detected in environmental matrices at relevant concentrations to human health. Currently, perchlorate-degrading bacteria are promising strategies for bioremediation in polluted sites. The aim of this study was to isolate and characterize halophilic bacteria with the potential for perchlorate reduction. Ten bacterial strains were isolated from soils of Galerazamba-Bolivar, Manaure-Guajira, and Salamanca Island-Magdalena, Colombia. Isolates grew at concentrations up to 30% sodium chloride. The isolates tolerated pH variations ranging from 6.5 to 12.0 and perchlorate concentrations up to 10000¿mg/L. Perchlorate was degraded by these bacteria on percentages between 25 and 10. 16S rRNA gene sequence analysis indicated that the strains were phylogenetically related to Vibrio, Bacillus, Salinovibrio, Staphylococcus, and Nesiotobacter genera. In conclusion, halophilic-isolated bacteria from hypersaline soils of the Colombian Caribbean are promising resources for the bioremediation of perchlorate contamination. es_ES
dc.description.sponsorship This research received support from the Vice Presidency of Research, University of Cartagena; and Colciencias-University of Cartagena (Grant: RC-758-2011/1107-521-29360). es_ES
dc.language Inglés es_ES
dc.publisher Hindawi es_ES
dc.relation.ispartof International Journal of Microbiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Perchlorate degrading bacteria es_ES
dc.subject Hypersaline soils es_ES
dc.subject Salinovibrio es_ES
dc.subject Bacillus es_ES
dc.title Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2019/6981865 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universidad de Cartagena//RC-758-2011%2F1107-521-29360/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Acevedo-Barrios, R.; Bertel-Sevilla, A.; Alonso Molina, JL.; Olivero-Verbel, J. (2019). Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean. International Journal of Microbiology. 2019:1-13. https://doi.org/10.1155/2019/6981865 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2019/6981865 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2019 es_ES
dc.identifier.pmid 30906324 es_ES
dc.identifier.pmcid PMC6398020 es_ES
dc.relation.pasarela S\402212 es_ES
dc.contributor.funder Universidad de Cartagena, Colombia es_ES
dc.description.references Cole-Dai, J., Peterson, K. M., Kennedy, J. A., Cox, T. S., & Ferris, D. G. (2018). Evidence of Influence of Human Activities and Volcanic Eruptions on Environmental Perchlorate from a 300-Year Greenland Ice Core Record. Environmental Science & Technology, 52(15), 8373-8380. doi:10.1021/acs.est.8b01890 es_ES
dc.description.references Acevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2018). Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research, 25(14), 13697-13708. doi:10.1007/s11356-018-1565-6 es_ES
dc.description.references Maffini, M. V., Trasande, L., & Neltner, T. G. (2016). Perchlorate and Diet: Human Exposures, Risks, and Mitigation Strategies. Current Environmental Health Reports, 3(2), 107-117. doi:10.1007/s40572-016-0090-3 es_ES
dc.description.references Knight, B. A., Shields, B. M., He, X., Pearce, E. N., Braverman, L. E., Sturley, R., & Vaidya, B. (2018). Effect of perchlorate and thiocyanate exposure on thyroid function of pregnant women from South-West England: a cohort study. Thyroid Research, 11(1). doi:10.1186/s13044-018-0053-x es_ES
dc.description.references Smith, P. N. (s. f.). The Ecotoxicology of Perchlorate in the Environment. Perchlorate, 153-168. doi:10.1007/0-387-31113-0_7 es_ES
dc.description.references Steinmaus, C., Pearl, M., Kharrazi, M., Blount, B. C., Miller, M. D., Pearce, E. N., … Liaw, J. (2016). Thyroid Hormones and Moderate Exposure to Perchlorate during Pregnancy in Women in Southern California. Environmental Health Perspectives, 124(6), 861-867. doi:10.1289/ehp.1409614 es_ES
dc.description.references Ghosh, A., Pakshirajan, K., Ghosh, P. K., & Sahoo, N. K. (2011). Perchlorate degradation using an indigenous microbial consortium predominantly Burkholderia sp. Journal of Hazardous Materials, 187(1-3), 133-139. doi:10.1016/j.jhazmat.2010.12.130 es_ES
dc.description.references Nerenberg, R., Rittmann, B. E., & Najm, I. (2002). Perchlorate reduction in a HYDROGEN-BASED MEMBRANE-BIOFILM REACTOR. Journal - American Water Works Association, 94(11), 103-114. doi:10.1002/j.1551-8833.2002.tb10234.x es_ES
dc.description.references Xu, J., & Logan, B. E. (2003). Measurement of chlorite dismutase activities in perchlorate respiring bacteria. Journal of Microbiological Methods, 54(2), 239-247. doi:10.1016/s0167-7012(03)00058-7 es_ES
dc.description.references Logan, B. E., Wu, J., & Unz, R. F. (2001). Biological Perchlorate Reduction in High-Salinity Solutions. Water Research, 35(12), 3034-3038. doi:10.1016/s0043-1354(01)00013-6 es_ES
dc.description.references Matsubara, T., Fujishima, K., Saltikov, C. W., Nakamura, S., & Rothschild, L. J. (2016). Earth analogues for past and future life on Mars: isolation of perchlorate resistant halophiles from Big Soda Lake. International Journal of Astrobiology, 16(3), 218-228. doi:10.1017/s1473550416000458 es_ES
dc.description.references Okeke, B. C., Giblin, T., & Frankenberger, W. T. (2002). Reduction of perchlorate and nitrate by salt tolerant bacteria. Environmental Pollution, 118(3), 357-363. doi:10.1016/s0269-7491(01)00288-3 es_ES
dc.description.references Vijaya Nadaraja, A., Gangadharan Puthiya Veetil, P., & Bhaskaran, K. (2012). Perchlorate reduction by an isolatedSerratia marcescensstrain under high salt and extreme pH. FEMS Microbiology Letters, 339(2), 117-121. doi:10.1111/1574-6968.12062 es_ES
dc.description.references Murray, C. W., & Bolger, P. (2014). Environmental Contaminants: Perchlorate. Encyclopedia of Food Safety, 337-341. doi:10.1016/b978-0-12-378612-8.00200-6 es_ES
dc.description.references Xu, J., Song, Y., Min, B., Steinberg, L., & Logan, B. E. (2003). Microbial Degradation of Perchlorate: Principles and Applications. Environmental Engineering Science, 20(5), 405-422. doi:10.1089/109287503768335904 es_ES
dc.description.references Wang, O., & Coates, J. (2017). Biotechnological Applications of Microbial (Per)chlorate Reduction. Microorganisms, 5(4), 76. doi:10.3390/microorganisms5040076 es_ES
dc.description.references Xiao, Y., & Roberts, D. J. (2013). Kinetics Analysis of a Salt-Tolerant Perchlorate-Reducing Bacterium: Effects of Sodium, Magnesium, and Nitrate. Environmental Science & Technology, 47(15), 8666-8673. doi:10.1021/es400835t es_ES
dc.description.references Nozawa-Inoue, M., Scow, K. M., & Rolston, D. E. (2005). Reduction of Perchlorate and Nitrate by Microbial Communities in Vadose Soil. Applied and Environmental Microbiology, 71(7), 3928-3934. doi:10.1128/aem.71.7.3928-3934.2005 es_ES
dc.description.references Shimkets, L. J., & Rafiee, H. (1990). CsgA, an extracellular protein essential for Myxococcus xanthus development. Journal of Bacteriology, 172(9), 5299-5306. doi:10.1128/jb.172.9.5299-5306.1990 es_ES
dc.description.references Acevedo-Barrios, R., Bertel-Sevilla, A., Alonso-Molina, J., & Olivero-Verbel, J. (2016). Perchlorate tolerant bacteria from saline environments at the Caribbean region of Colombia. Toxicology Letters, 259, S103. doi:10.1016/j.toxlet.2016.07.257 es_ES
dc.description.references Iizuka, T., Tokura, M., Jojima, Y., Hiraishi, A., Yamanaka, S., & Fudou, R. (2006). Enrichment and Phylogenetic Analysis of Moderately Thermophilic Myxobacteria from Hot Springs in Japan. Microbes and Environments, 21(3), 189-199. doi:10.1264/jsme2.21.189 es_ES
dc.description.references Wu, Z.-H., Jiang, D.-M., Li, P., & Li, Y.-Z. (2005). Exploring the diversity of myxobacteria in a soil niche by myxobacteria-specific primers and probes. Environmental Microbiology, 7(10), 1602-1610. doi:10.1111/j.1462-2920.2005.00852.x es_ES
dc.description.references Huang, X. (1999). CAP3: A DNA Sequence Assembly Program. Genome Research, 9(9), 868-877. doi:10.1101/gr.9.9.868 es_ES
dc.description.references The neighbor-joining method: a new method for reconstructing phylogenetic trees. (1987). Molecular Biology and Evolution. doi:10.1093/oxfordjournals.molbev.a040454 es_ES
dc.description.references Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368-376. doi:10.1007/bf01734359 es_ES
dc.description.references Fitch, W. M. (1971). Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Systematic Biology, 20(4), 406-416. doi:10.1093/sysbio/20.4.406 es_ES
dc.description.references Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. doi:10.1093/molbev/mst197 es_ES
dc.description.references Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. doi:10.1007/bf01731581 es_ES
dc.description.references Felsenstein, J. (1985). CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP. Evolution, 39(4), 783-791. doi:10.1111/j.1558-5646.1985.tb00420.x es_ES
dc.description.references Albuquerque, L., Tiago, I., Taborda, M., Nobre, M. F., Verissimo, A., & da Costa, M. S. (2008). Bacillus isabeliae sp. nov., a halophilic bacterium isolated from a sea salt evaporation pond. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 58(1), 226-230. doi:10.1099/ijs.0.65217-0 es_ES
dc.description.references Gholamian, F., Sheikh-Mohseni, M. A., & Salavati-Niasari, M. (2011). Highly selective determination of perchlorate by a novel potentiometric sensor based on a synthesized complex of copper. Materials Science and Engineering: C, 31(8), 1688-1691. doi:10.1016/j.msec.2011.07.017 es_ES
dc.description.references Donachie, S. P., Bowman, J. P., & Alam, M. (2006). Nesiotobacter exalbescens gen. nov., sp. nov., a moderately thermophilic alphaproteobacterium from an Hawaiian hypersaline lake. International Journal of Systematic and Evolutionary Microbiology, 56(3), 563-567. doi:10.1099/ijs.0.63440-0 es_ES
dc.description.references Ling, J., Zhang, G., Sun, H., Fan, Y., Ju, J., & Zhang, C. (2011). Isolation and characterization of a novel pyrene-degrading Bacillus vallismortis strain JY3A. Science of The Total Environment, 409(10), 1994-2000. doi:10.1016/j.scitotenv.2011.02.020 es_ES
dc.description.references Romano, I., Gambacorta, A., Lama, L., Nicolaus, B., & Giordano, A. (2005). Salinivibrio costicola subsp. alcaliphilus subsp. nov., a haloalkaliphilic aerobe from Campania Region (Italy). Systematic and Applied Microbiology, 28(1), 34-42. doi:10.1016/j.syapm.2004.10.001 es_ES
dc.description.references Ali Amoozegar, M., Zahra Fatemi, A., Reza Karbalaei-Heidari, H., & Reza Razavi, M. (2007). Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004. Microbiological Research, 162(4), 369-377. doi:10.1016/j.micres.2006.02.007 es_ES
dc.description.references Dubert, J., Romalde, J. L., Prado, S., & Barja, J. L. (2016). Vibrio bivalvicida sp. nov., a novel larval pathogen for bivalve molluscs reared in a hatchery. Systematic and Applied Microbiology, 39(1), 8-13. doi:10.1016/j.syapm.2015.10.006 es_ES
dc.description.references Paek, J., Shin, J. H., Shin, Y., Park, I.-S., Kim, H., Kook, J.-K., … Chang, Y.-H. (2016). Vibrio injenensis sp. nov., isolated from human clinical specimens. Antonie van Leeuwenhoek, 110(1), 145-152. doi:10.1007/s10482-016-0810-6 es_ES
dc.description.references Kumar, P. S., Paulraj, M. G., Ignacimuthu, S., Al-Dhabi, N. A., & Sukumaran, D. (2017). IN VITRO ANTAGONISTIC ACTIVITY OF SOIL STREPTOMYCES COLLINUS DPR20 AGAINST BACTERIAL PATHOGENS. Journal of Microbiology, Biotechnology and Food Sciences, 7(3), 317-324. doi:10.15414/jmbfs.2017/18.7.3.317-324 es_ES
dc.description.references Bruce, R. A., Achenbach, L. A., & Coates, J. D. (1999). Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environmental Microbiology, 1(4), 319-329. doi:10.1046/j.1462-2920.1999.00042.x es_ES
dc.description.references Waller, A. S., Cox, E. E., & Edwards, E. A. (2004). Perchlorate-reducing microorganisms isolated from contaminated sites. Environmental Microbiology, 6(5), 517-527. doi:10.1111/j.1462-2920.2004.00598.x es_ES
dc.description.references Chaudhuri, S. K., O’Connor, S. M., Gustavson, R. L., Achenbach, L. A., & Coates, J. D. (2002). Environmental Factors That Control Microbial Perchlorate Reduction. Applied and Environmental Microbiology, 68(9), 4425-4430. doi:10.1128/aem.68.9.4425-4430.2002 es_ES
dc.description.references Liebensteiner, M. G., Oosterkamp, M. J., & Stams, A. J. M. (2015). Microbial respiration with chlorine oxyanions: diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms. Annals of the New York Academy of Sciences, 1365(1), 59-72. doi:10.1111/nyas.12806 es_ES
dc.description.references Zhu, Y., Gao, N., Chu, W., Wang, S., & Xu, J. (2016). Bacterial reduction of highly concentrated perchlorate: Kinetics and influence of co-existing electron acceptors, temperature, pH and electron donors. Chemosphere, 148, 188-194. doi:10.1016/j.chemosphere.2015.10.130 es_ES
dc.description.references Giblin, T., & Frankenberger, W. T. (2001). Perchlorate and nitrate reductase activity in the perchlorate-respiring bacterium perclace. Microbiological Research, 156(4), 311-315. doi:10.1078/0944-5013-00111 es_ES
dc.description.references Sevda, S., Sreekishnan, T. R., Pous, N., Puig, S., & Pant, D. (2018). Bioelectroremediation of perchlorate and nitrate contaminated water: A review. Bioresource Technology, 255, 331-339. doi:10.1016/j.biortech.2018.02.005 es_ES
dc.description.references Wang, C., Lippincott, L., & Meng, X. (2008). Kinetics of biological perchlorate reduction and pH effect. Journal of Hazardous Materials, 153(1-2), 663-669. doi:10.1016/j.jhazmat.2007.09.010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem