- -

A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

El jueves 27 desde las 00 hasta 10:00 horas el sistema se apagará debido a tareas habituales de mantenimiento

A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends

Show full item record

Quiles-Carrillo, L.; Montanes, N.; Jorda-Vilaplana, A.; Balart, R.; Torres-Giner, S. (2019). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science. 136(16). https://doi.org/10.1002/APP.47396

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141958

Files in this item

Item Metadata

Title: A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends
Author: Quiles-Carrillo, Luis Montanes, Nestor Jorda-Vilaplana, Amparo Balart, Rafael Torres-Giner, S.
UPV Unit: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] The present study reports on the development of binary blends consisting of bio-based high-density polyethylene (bio-HDPE) with polylactide (PLA), in the 5¿20 wt % range, prepared by melt compounding and then shaped ...[+]
Subjects: Biodegradable , Biomaterials , Morphology , Mechanical Properties
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Journal of Applied Polymer Science. (issn: 0021-8995 )
DOI: 10.1002/APP.47396
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/APP.47396
Project ID:
info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/
info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/
MICINN/IJCI-2016-29675
info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
Description: This is the peer reviewed version of the following article: Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R. and Torres-Giner, S. (2019), A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. J. Appl. Polym. Sci., 136, 47396, which has been published in final form at https://doi.org/10.1002/APP.47396. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Thanks:
This research was funded by the EU H2020 project YPACK (reference number 773872) and by the Ministry of Science, Innovation, and Universities (MICIU, project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R). ...[+]
Type: Artículo

References

Tahir, N., Bhatti, H. N., Iqbal, M., & Noreen, S. (2017). Biopolymers composites with peanut hull waste biomass and application for Crystal Violet adsorption. International Journal of Biological Macromolecules, 94, 210-220. doi:10.1016/j.ijbiomac.2016.10.013

Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. doi:10.1016/j.eurpolymj.2013.01.019

Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588 [+]
Tahir, N., Bhatti, H. N., Iqbal, M., & Noreen, S. (2017). Biopolymers composites with peanut hull waste biomass and application for Crystal Violet adsorption. International Journal of Biological Macromolecules, 94, 210-220. doi:10.1016/j.ijbiomac.2016.10.013

Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. doi:10.1016/j.eurpolymj.2013.01.019

Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588

Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039

Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. doi:10.1016/j.progpolymsci.2006.03.002

Quiles-Carrillo, L., Montanes, N., Pineiro, F., Jorda-Vilaplana, A., & Torres-Giner, S. (2018). Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-caprolactone) and Thermoplastic Starch. Materials, 11(11), 2138. doi:10.3390/ma11112138

Kumar, S., Panda, A. K., & Singh, R. K. (2011). A review on tertiary recycling of high-density polyethylene to fuel. Resources, Conservation and Recycling, 55(11), 893-910. doi:10.1016/j.resconrec.2011.05.005

Biresaw, G., & Carriere, C. J. (2002). Interfacial tension of poly(lactic acid)/polystyrene blends. Journal of Polymer Science Part B: Polymer Physics, 40(19), 2248-2258. doi:10.1002/polb.10290

Li, N., Li, Y., & Liu, S. (2016). Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. Journal of Materials Processing Technology, 238, 218-225. doi:10.1016/j.jmatprotec.2016.07.025

Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30(1), 321-328. doi:10.1016/j.biotechadv.2011.06.019

Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340, 9-14. doi:10.1016/j.cej.2018.01.010

Oksman, K., Skrifvars, M., & Selin, J.-F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9), 1317-1324. doi:10.1016/s0266-3538(03)00103-9

Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835-864. doi:10.1002/mabi.200400043

Agrawal, A., Saran, A. D., Rath, S. S., & Khanna, A. (2004). Constrained nonlinear optimization for solubility parameters of poly(lactic acid) and poly(glycolic acid)—validation and comparison. Polymer, 45(25), 8603-8612. doi:10.1016/j.polymer.2004.10.022

Camacho, J., Díez, E., Díaz, I., & Ovejero, G. (2017). Hansen solubility parameter: from polyethylene and poly(vinyl acetate) homopolymers to ethylene-vinyl acetate copolymers. Polymer International, 66(7), 1013-1020. doi:10.1002/pi.5351

Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2

Ying-Chen, Z., Hong-Yan, W., & Yi-Ping, Q. (2010). Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber. Bioresource Technology, 101(20), 7944-7950. doi:10.1016/j.biortech.2010.05.007

Garcia, D., Balart, R., Sánchez, L., & López, J. (2007). Compatibility of recycled PVC/ABS blends. Effect of previous degradation. Polymer Engineering & Science, 47(6), 789-796. doi:10.1002/pen.20755

Afshari, M., Kotek, R., Haghighat Kish, M., Nazock Dast, H., & Gupta, B. S. (2002). Effect of blend ratio on bulk properties and matrix–fibril morphology of polypropylene/nylon 6 polyblend fibers. Polymer, 43(4), 1331-1341. doi:10.1016/s0032-3861(01)00689-9

Palabiyik, M., & Bahadur, S. (2000). Mechanical and tribological properties of polyamide 6 and high density polyethylene polyblends with and without compatibilizer. Wear, 246(1-2), 149-158. doi:10.1016/s0043-1648(00)00501-9

Macosko, C. W., Guégan, P., Khandpur, A. K., Nakayama, A., Marechal, P., & Inoue, T. (1996). Compatibilizers for Melt Blending:  Premade Block Copolymers†. Macromolecules, 29(17), 5590-5598. doi:10.1021/ma9602482

Wang, Y., & Hillmyer, M. A. (2001). Polyethylene-poly(L-lactide) diblock copolymers: Synthesis and compatibilization of poly(L-lactide)/polyethylene blends. Journal of Polymer Science Part A: Polymer Chemistry, 39(16), 2755-2766. doi:10.1002/pola.1254

Nehra, R., Maiti, S. N., & Jacob, J. (2017). Poly(lactic acid)/(styrene-ethylene-butylene-styrene)-g-maleic anhydride copolymer/sepiolite nanocomposites: Investigation of thermo-mechanical and morphological properties. Polymers for Advanced Technologies, 29(1), 234-243. doi:10.1002/pat.4108

Aróstegui, A., & Nazábal, J. (2003). Supertoughness and critical interparticle distance dependence in poly(butylene terephthalate) and poly(ethylene-co-glycidyl methacrylate) blends. Journal of Polymer Science Part B: Polymer Physics, 41(19), 2236-2247. doi:10.1002/polb.10582

Li, Z., Tan, B. H., Lin, T., & He, C. (2016). Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Progress in Polymer Science, 62, 22-72. doi:10.1016/j.progpolymsci.2016.05.003

Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057

Zeng, J.-B., Li, K.-A., & Du, A.-K. (2015). Compatibilization strategies in poly(lactic acid)-based blends. RSC Advances, 5(41), 32546-32565. doi:10.1039/c5ra01655j

Carbonell-Verdu, A., Samper, M. D., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products, 104, 278-286. doi:10.1016/j.indcrop.2017.04.050

Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339

Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082

Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329

Chen, G., Li, S., Jiao, F., & Yuan, Q. (2007). Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors. Catalysis Today, 125(1-2), 111-119. doi:10.1016/j.cattod.2007.01.071

Babu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. doi:10.1186/2194-0517-2-8

Abdolrasouli, M. H., Sadeghi, G. M. M., Nazockdast, H., & Babaei, A. (2014). Polylactide/Polyethylene/Organoclay Blend Nanocomposites: Structure, Mechanical and Thermal Properties. Polymer-Plastics Technology and Engineering, 53(13), 1417-1424. doi:10.1080/03602559.2014.909477

Abdolrasouli, M. H., Nazockdast, H., Sadeghi, G. M. M., & Kaschta, J. (2014). Morphology development, melt linear viscoelastic properties and crystallinity of polylactide/polyethylene/organoclay blend nanocomposites. Journal of Applied Polymer Science, 132(3), n/a-n/a. doi:10.1002/app.41300

Madhu, G., Bhunia, H., Bajpai, P. K., & Chaudhary, V. (2014). Mechanical and morphological properties of high density polyethylene and polylactide blends. Journal of Polymer Engineering, 34(9), 813-821. doi:10.1515/polyeng-2013-0174

Bétron, C., Cassagnau, P., & Bounor-Legaré, V. (2018). EPDM crosslinking from bio-based vegetable oil and Diels–Alder reactions. Materials Chemistry and Physics, 211, 361-374. doi:10.1016/j.matchemphys.2018.02.038

Haque, M. M.-U., Herrera, N., Geng, S., & Oksman, K. (2017). Melt compounded nanocomposites with semi-interpenetrated network structure based on natural rubber, polyethylene, and carrot nanofibers. Journal of Applied Polymer Science, 135(10), 45961. doi:10.1002/app.45961

Pourshooshtar, R., Ahmadi, Z., & Taromi, F. A. (2018). Formation of 3D networks in polylactic acid by adjusting the cross-linking agent content with respect to processing variables: a simple approach. Iranian Polymer Journal, 27(5), 329-337. doi:10.1007/s13726-018-0613-x

Zhou, L., He, H., Li, M., Huang, S., Mei, C., & Wu, Q. (2018). Enhancing mechanical properties of poly(lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Industrial Crops and Products, 112, 449-459. doi:10.1016/j.indcrop.2017.12.044

Yang, S., Wu, Z.-H., Yang, W., & Yang, M.-B. (2008). Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing, 27(8), 957-963. doi:10.1016/j.polymertesting.2008.08.009

Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018

Ma, P., Hristova-Bogaerds, D. G., Lemstra, P. J., Zhang, Y., & Wang, S. (2011). Toughening of PHBV/PBS and PHB/PBS Blends via In situ Compatibilization Using Dicumyl Peroxide as a Free-Radical Grafting Initiator. Macromolecular Materials and Engineering, 297(5), 402-410. doi:10.1002/mame.201100224

Utracki, L. A. (2002). Compatibilization of Polymer Blends. The Canadian Journal of Chemical Engineering, 80(6), 1008-1016. doi:10.1002/cjce.5450800601

Wang, Q., Qi, R., Shen, Y., Liu, Q., & Zhou, C. (2007). Effect of high-density polyethylene-g-maleic anhydride on the morphology and properties of (high-density polyethylene)/(ethylene-vinyl alcohol) copolymer alloys. Journal of Applied Polymer Science, 106(5), 3220-3226. doi:10.1002/app.26097

Quiroz-Castillo, J. M., Rodríguez-Félix, D. E., Grijalva-Monteverde, H., del Castillo-Castro, T., Plascencia-Jatomea, M., Rodríguez-Félix, F., & Herrera-Franco, P. J. (2014). Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride. Carbohydrate Polymers, 101, 1094-1100. doi:10.1016/j.carbpol.2013.10.052

Ma, P., Cai, X., Zhang, Y., Wang, S., Dong, W., Chen, M., & Lemstra, P. J. (2014). In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator. Polymer Degradation and Stability, 102, 145-151. doi:10.1016/j.polymdegradstab.2014.01.025

Yoo, T. W., Yoon, H. G., Choi, S. J., Kim, M. S., Kim, Y. H., & Kim, W. N. (2010). Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends. Macromolecular Research, 18(6), 583-588. doi:10.1007/s13233-010-0613-y

Montanes, N., Garcia-Sanoguera, D., Segui, V. J., Fenollar, O., & Boronat, T. (2017). Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs. Journal of Polymers and the Environment, 26(3), 1218-1230. doi:10.1007/s10924-017-1025-2

Huang, Y., Zhang, C., Pan, Y., Wang, W., Jiang, L., & Dan, Y. (2012). Study on the Effect of Dicumyl Peroxide on Structure and Properties of Poly(Lactic Acid)/Natural Rubber Blend. Journal of Polymers and the Environment, 21(2), 375-387. doi:10.1007/s10924-012-0544-0

Wang, N., Yu, J., & Ma, X. (2007). Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polymer International, 56(11), 1440-1447. doi:10.1002/pi.2302

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record