- -

A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.contributor.author Montanes, Nestor es_ES
dc.contributor.author Jorda-Vilaplana, Amparo es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Torres-Giner, S. es_ES
dc.date.accessioned 2020-04-29T07:04:49Z
dc.date.available 2020-04-29T07:04:49Z
dc.date.issued 2019-04 es_ES
dc.identifier.issn 0021-8995 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141958
dc.description This is the peer reviewed version of the following article: Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R. and Torres-Giner, S. (2019), A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. J. Appl. Polym. Sci., 136, 47396, which has been published in final form at https://doi.org/10.1002/APP.47396. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] The present study reports on the development of binary blends consisting of bio-based high-density polyethylene (bio-HDPE) with polylactide (PLA), in the 5¿20 wt % range, prepared by melt compounding and then shaped into pieces by injection molding. In order to enhance the miscibility between the green polyolefin and the biopolyester, different reactive compatibilizers were added during the melt-blending process, namely polyethylene grafted maleic anhydride (PE-g-MA), poly(ethylene-co-glycidyl methacrylate) (PE-co-GMA), maleinized linseed oil (MLO), and a combination of MLO with dicumyl peroxide (DCP). Among the tested compatibilizers, the dual addition of MLO and DCP provided the binary blend pieces with the most balanced mechanical performance in terms of rigidity and impact strength as well as the highest thermal stability. The fracture surface of the binary blend piece processed with MLO and DCP revealed the formation of a continuous structure in which the dispersed PLA phase was nearly no discerned in the bio-HDPE matrix. The resultant miscibility improvement was ascribed to both the high solubility and plasticizing effect of MLO on the PLA phase as well as the crosslinking effect of DCP on both biopolymers. The latter effect was particularly related to the formation of macroradicals of each biopolymer that, thereafter, led to the in situ formation of bio HDPE-co-PLA copolymers and also to the development of a partially crosslinked network in the binary blend. As a result, cost-effective and fully bio-based polymer pieces with improved mechanical strength, high toughness, and enhanced thermal resistance were obtained. es_ES
dc.description.sponsorship This research was funded by the EU H2020 project YPACK (reference number 773872) and by the Ministry of Science, Innovation, and Universities (MICIU, project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R). Quiles-Carrillo and Torres-Giner are recipients of a FPU grant (FPU15/03812) from the Spanish Ministry of Education, Culture, and Sports (MECD) and a Juan de la Cierva contract (IJCI-2016-29675) from the MICIU, respectively. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Applied Polymer Science es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Biodegradable es_ES
dc.subject Biomaterials es_ES
dc.subject Morphology es_ES
dc.subject Mechanical Properties es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/APP.47396 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/773872/EU/HIGH PERFORMANCE POLYHYDROXYALKANOATES BASED PACKAGING TO MINIMISE FOOD WASTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-1-R/ES/DESARROLLO DE UN CONCEPTO DE ENVASE MULTICAPA ALIMENTARIO DE ALTA BARRERA Y CON CARACTER ACTIVO Y BIOACTIVO DERIVADO DE SUBPRODUCTOS ALIMENTARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Quiles-Carrillo, L.; Montanes, N.; Jorda-Vilaplana, A.; Balart, R.; Torres-Giner, S. (2019). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science. 136(16). https://doi.org/10.1002/APP.47396 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/APP.47396 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 136 es_ES
dc.description.issue 16 es_ES
dc.relation.pasarela S\374543 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Tahir, N., Bhatti, H. N., Iqbal, M., & Noreen, S. (2017). Biopolymers composites with peanut hull waste biomass and application for Crystal Violet adsorption. International Journal of Biological Macromolecules, 94, 210-220. doi:10.1016/j.ijbiomac.2016.10.013 es_ES
dc.description.references Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. doi:10.1016/j.eurpolymj.2013.01.019 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588 es_ES
dc.description.references Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039 es_ES
dc.description.references Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. doi:10.1016/j.progpolymsci.2006.03.002 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Pineiro, F., Jorda-Vilaplana, A., & Torres-Giner, S. (2018). Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-caprolactone) and Thermoplastic Starch. Materials, 11(11), 2138. doi:10.3390/ma11112138 es_ES
dc.description.references Kumar, S., Panda, A. K., & Singh, R. K. (2011). A review on tertiary recycling of high-density polyethylene to fuel. Resources, Conservation and Recycling, 55(11), 893-910. doi:10.1016/j.resconrec.2011.05.005 es_ES
dc.description.references Biresaw, G., & Carriere, C. J. (2002). Interfacial tension of poly(lactic acid)/polystyrene blends. Journal of Polymer Science Part B: Polymer Physics, 40(19), 2248-2258. doi:10.1002/polb.10290 es_ES
dc.description.references Li, N., Li, Y., & Liu, S. (2016). Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. Journal of Materials Processing Technology, 238, 218-225. doi:10.1016/j.jmatprotec.2016.07.025 es_ES
dc.description.references Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30(1), 321-328. doi:10.1016/j.biotechadv.2011.06.019 es_ES
dc.description.references Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340, 9-14. doi:10.1016/j.cej.2018.01.010 es_ES
dc.description.references Oksman, K., Skrifvars, M., & Selin, J.-F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9), 1317-1324. doi:10.1016/s0266-3538(03)00103-9 es_ES
dc.description.references Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835-864. doi:10.1002/mabi.200400043 es_ES
dc.description.references Agrawal, A., Saran, A. D., Rath, S. S., & Khanna, A. (2004). Constrained nonlinear optimization for solubility parameters of poly(lactic acid) and poly(glycolic acid)—validation and comparison. Polymer, 45(25), 8603-8612. doi:10.1016/j.polymer.2004.10.022 es_ES
dc.description.references Camacho, J., Díez, E., Díaz, I., & Ovejero, G. (2017). Hansen solubility parameter: from polyethylene and poly(vinyl acetate) homopolymers to ethylene-vinyl acetate copolymers. Polymer International, 66(7), 1013-1020. doi:10.1002/pi.5351 es_ES
dc.description.references Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2 es_ES
dc.description.references Ying-Chen, Z., Hong-Yan, W., & Yi-Ping, Q. (2010). Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber. Bioresource Technology, 101(20), 7944-7950. doi:10.1016/j.biortech.2010.05.007 es_ES
dc.description.references Garcia, D., Balart, R., Sánchez, L., & López, J. (2007). Compatibility of recycled PVC/ABS blends. Effect of previous degradation. Polymer Engineering & Science, 47(6), 789-796. doi:10.1002/pen.20755 es_ES
dc.description.references Afshari, M., Kotek, R., Haghighat Kish, M., Nazock Dast, H., & Gupta, B. S. (2002). Effect of blend ratio on bulk properties and matrix–fibril morphology of polypropylene/nylon 6 polyblend fibers. Polymer, 43(4), 1331-1341. doi:10.1016/s0032-3861(01)00689-9 es_ES
dc.description.references Palabiyik, M., & Bahadur, S. (2000). Mechanical and tribological properties of polyamide 6 and high density polyethylene polyblends with and without compatibilizer. Wear, 246(1-2), 149-158. doi:10.1016/s0043-1648(00)00501-9 es_ES
dc.description.references Macosko, C. W., Guégan, P., Khandpur, A. K., Nakayama, A., Marechal, P., & Inoue, T. (1996). Compatibilizers for Melt Blending:  Premade Block Copolymers†. Macromolecules, 29(17), 5590-5598. doi:10.1021/ma9602482 es_ES
dc.description.references Wang, Y., & Hillmyer, M. A. (2001). Polyethylene-poly(L-lactide) diblock copolymers: Synthesis and compatibilization of poly(L-lactide)/polyethylene blends. Journal of Polymer Science Part A: Polymer Chemistry, 39(16), 2755-2766. doi:10.1002/pola.1254 es_ES
dc.description.references Nehra, R., Maiti, S. N., & Jacob, J. (2017). Poly(lactic acid)/(styrene-ethylene-butylene-styrene)-g-maleic anhydride copolymer/sepiolite nanocomposites: Investigation of thermo-mechanical and morphological properties. Polymers for Advanced Technologies, 29(1), 234-243. doi:10.1002/pat.4108 es_ES
dc.description.references Aróstegui, A., & Nazábal, J. (2003). Supertoughness and critical interparticle distance dependence in poly(butylene terephthalate) and poly(ethylene-co-glycidyl methacrylate) blends. Journal of Polymer Science Part B: Polymer Physics, 41(19), 2236-2247. doi:10.1002/polb.10582 es_ES
dc.description.references Li, Z., Tan, B. H., Lin, T., & He, C. (2016). Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Progress in Polymer Science, 62, 22-72. doi:10.1016/j.progpolymsci.2016.05.003 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057 es_ES
dc.description.references Zeng, J.-B., Li, K.-A., & Du, A.-K. (2015). Compatibilization strategies in poly(lactic acid)-based blends. RSC Advances, 5(41), 32546-32565. doi:10.1039/c5ra01655j es_ES
dc.description.references Carbonell-Verdu, A., Samper, M. D., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products, 104, 278-286. doi:10.1016/j.indcrop.2017.04.050 es_ES
dc.description.references Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329 es_ES
dc.description.references Chen, G., Li, S., Jiao, F., & Yuan, Q. (2007). Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors. Catalysis Today, 125(1-2), 111-119. doi:10.1016/j.cattod.2007.01.071 es_ES
dc.description.references Babu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. doi:10.1186/2194-0517-2-8 es_ES
dc.description.references Abdolrasouli, M. H., Sadeghi, G. M. M., Nazockdast, H., & Babaei, A. (2014). Polylactide/Polyethylene/Organoclay Blend Nanocomposites: Structure, Mechanical and Thermal Properties. Polymer-Plastics Technology and Engineering, 53(13), 1417-1424. doi:10.1080/03602559.2014.909477 es_ES
dc.description.references Abdolrasouli, M. H., Nazockdast, H., Sadeghi, G. M. M., & Kaschta, J. (2014). Morphology development, melt linear viscoelastic properties and crystallinity of polylactide/polyethylene/organoclay blend nanocomposites. Journal of Applied Polymer Science, 132(3), n/a-n/a. doi:10.1002/app.41300 es_ES
dc.description.references Madhu, G., Bhunia, H., Bajpai, P. K., & Chaudhary, V. (2014). Mechanical and morphological properties of high density polyethylene and polylactide blends. Journal of Polymer Engineering, 34(9), 813-821. doi:10.1515/polyeng-2013-0174 es_ES
dc.description.references Bétron, C., Cassagnau, P., & Bounor-Legaré, V. (2018). EPDM crosslinking from bio-based vegetable oil and Diels–Alder reactions. Materials Chemistry and Physics, 211, 361-374. doi:10.1016/j.matchemphys.2018.02.038 es_ES
dc.description.references Haque, M. M.-U., Herrera, N., Geng, S., & Oksman, K. (2017). Melt compounded nanocomposites with semi-interpenetrated network structure based on natural rubber, polyethylene, and carrot nanofibers. Journal of Applied Polymer Science, 135(10), 45961. doi:10.1002/app.45961 es_ES
dc.description.references Pourshooshtar, R., Ahmadi, Z., & Taromi, F. A. (2018). Formation of 3D networks in polylactic acid by adjusting the cross-linking agent content with respect to processing variables: a simple approach. Iranian Polymer Journal, 27(5), 329-337. doi:10.1007/s13726-018-0613-x es_ES
dc.description.references Zhou, L., He, H., Li, M., Huang, S., Mei, C., & Wu, Q. (2018). Enhancing mechanical properties of poly(lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Industrial Crops and Products, 112, 449-459. doi:10.1016/j.indcrop.2017.12.044 es_ES
dc.description.references Yang, S., Wu, Z.-H., Yang, W., & Yang, M.-B. (2008). Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing, 27(8), 957-963. doi:10.1016/j.polymertesting.2008.08.009 es_ES
dc.description.references Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018 es_ES
dc.description.references Ma, P., Hristova-Bogaerds, D. G., Lemstra, P. J., Zhang, Y., & Wang, S. (2011). Toughening of PHBV/PBS and PHB/PBS Blends via In situ Compatibilization Using Dicumyl Peroxide as a Free-Radical Grafting Initiator. Macromolecular Materials and Engineering, 297(5), 402-410. doi:10.1002/mame.201100224 es_ES
dc.description.references Utracki, L. A. (2002). Compatibilization of Polymer Blends. The Canadian Journal of Chemical Engineering, 80(6), 1008-1016. doi:10.1002/cjce.5450800601 es_ES
dc.description.references Wang, Q., Qi, R., Shen, Y., Liu, Q., & Zhou, C. (2007). Effect of high-density polyethylene-g-maleic anhydride on the morphology and properties of (high-density polyethylene)/(ethylene-vinyl alcohol) copolymer alloys. Journal of Applied Polymer Science, 106(5), 3220-3226. doi:10.1002/app.26097 es_ES
dc.description.references Quiroz-Castillo, J. M., Rodríguez-Félix, D. E., Grijalva-Monteverde, H., del Castillo-Castro, T., Plascencia-Jatomea, M., Rodríguez-Félix, F., & Herrera-Franco, P. J. (2014). Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride. Carbohydrate Polymers, 101, 1094-1100. doi:10.1016/j.carbpol.2013.10.052 es_ES
dc.description.references Ma, P., Cai, X., Zhang, Y., Wang, S., Dong, W., Chen, M., & Lemstra, P. J. (2014). In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator. Polymer Degradation and Stability, 102, 145-151. doi:10.1016/j.polymdegradstab.2014.01.025 es_ES
dc.description.references Yoo, T. W., Yoon, H. G., Choi, S. J., Kim, M. S., Kim, Y. H., & Kim, W. N. (2010). Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends. Macromolecular Research, 18(6), 583-588. doi:10.1007/s13233-010-0613-y es_ES
dc.description.references Montanes, N., Garcia-Sanoguera, D., Segui, V. J., Fenollar, O., & Boronat, T. (2017). Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs. Journal of Polymers and the Environment, 26(3), 1218-1230. doi:10.1007/s10924-017-1025-2 es_ES
dc.description.references Huang, Y., Zhang, C., Pan, Y., Wang, W., Jiang, L., & Dan, Y. (2012). Study on the Effect of Dicumyl Peroxide on Structure and Properties of Poly(Lactic Acid)/Natural Rubber Blend. Journal of Polymers and the Environment, 21(2), 375-387. doi:10.1007/s10924-012-0544-0 es_ES
dc.description.references Wang, N., Yu, J., & Ma, X. (2007). Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polymer International, 56(11), 1440-1447. doi:10.1002/pi.2302 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem