Mostrar el registro sencillo del ítem
dc.contributor.author | Carando, Daniel | es_ES |
dc.contributor.author | Defant, A. | es_ES |
dc.contributor.author | Sevilla Peris, Pablo | es_ES |
dc.date.accessioned | 2020-04-29T07:04:57Z | |
dc.date.available | 2020-04-29T07:04:57Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0021-7670 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141961 | |
dc.description.abstract | [EN] Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series is uniformly a.s.- sign convergent (i.e., converges uniformly for almost all sequences of signs epsilon (n) = +/- 1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space. | es_ES |
dc.description.sponsorship | Supported by CONICET-PIP 11220130100329CO, PICT 2015-2299 and UBACyT 20020130100474BA. Supported by MICINN MTM2017-83262-C2-1-P. Supported by MICINN MTM2017-83262-C2-1-P and UPV-SP20120700. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal d Analyse Mathématique | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Almost sure-sign convergence of Hardy-type Dirichlet series | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11854-018-0034-y | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICET//PIP 11220130100329CO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT-2015-2299/AR/Análisis no lineal en dimensión infinita y geometría de espacios de Banach/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UBA/UBACyT/20020130100474BA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120700/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Carando, D.; Defant, A.; Sevilla Peris, P. (2018). Almost sure-sign convergence of Hardy-type Dirichlet series. Journal d Analyse Mathématique. 135(1):225-247. https://doi.org/10.1007/s11854-018-0034-y | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11854-018-0034-y | es_ES |
dc.description.upvformatpinicio | 225 | es_ES |
dc.description.upvformatpfin | 247 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 135 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\384911 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Universidad de Buenos Aires | es_ES |
dc.contributor.funder | Agencia Nacional de Promoción Científica y Tecnológica, Argentina | es_ES |
dc.contributor.funder | Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | A. Aleman, J.-F. Olsen, and E. Saksman, Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN 16 (2014), 4368–4378. | es_ES |
dc.description.references | R. Balasubramanian, B. Calado, and H. Queffélec, The Bohr inequality for ordinary Dirichlet series Studia Math. 175 (2006), 285–304. | es_ES |
dc.description.references | F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), 203–236. | es_ES |
dc.description.references | F. Bayart, A. Defant, L. Frerick, M. Maestre, and P. Sevilla-Peris, Monomial series expansion of Hp-functions and multipliers ofHp-Dirichlet series, Math. Ann. 368 (2017), 837–876. | es_ES |
dc.description.references | F. Bayart, D. Pellegrino, and J. B. Seoane-Sepúlveda, The Bohr radius of the n-dimensional polydisk is equivalent to $$\sqrt {\left( {\log n} \right)/n} $$ ( log n ) / n , Adv. Math. 264 (2014), 726–746. | es_ES |
dc.description.references | F. Bayart, H. Queffélec, and K. Seip, Approximation numbers of composition operators on Hp spaces of Dirichlet series, Ann. Inst. Fourier (Grenoble) 66 (2016), 551–588. | es_ES |
dc.description.references | H. F. Bohnenblust and E. Hille. On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), 600–622. | es_ES |
dc.description.references | H. Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen $$\sum {\frac{{{a_n}}}{{{n^s}}}} $$ ∑ a n n s , Nachr. Ges.Wiss. Göttingen, Math. Phys. Kl., 1913, pp. 441–488. | es_ES |
dc.description.references | D. Carando, A. Defant, and P. Sevilla-Peris, Bohr’s absolute convergence problem for Hp- Dirichlet series in Banach spaces, Anal. PDE 7 (2014), 513–527. | es_ES |
dc.description.references | D. Carando, A. Defant, and P. Sevilla-Peris, Some polynomial versions of cotype and applications, J. Funct. Anal. 270 (2016), 68–87. | es_ES |
dc.description.references | B. J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), 112–142. | es_ES |
dc.description.references | R. de la Bretèche. Sur l’ordre de grandeur des polynômes de Dirichlet, Acta Arith. 134 (2008), 141–148. | es_ES |
dc.description.references | A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounäies, and K. Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011), 485–497. | es_ES |
dc.description.references | A. Defant, D. García, M. Maestre, and D. Pérez-García, Bohr’s strip for vector valued Dirichlet series, Math. Ann. 342 (2008), 533–555. | es_ES |
dc.description.references | A. Defant, M. Maestre, and U. Schwarting, Bohr radii of vector valued holomorphic functions, Adv. Math. 231 (2012), 2837–2857. | es_ES |
dc.description.references | A. Defant and A. Pérez, Hardy spaces of vector-valued Dirichlet series, StudiaMath. (to appear), 2018 DOI: 10.4064/sm170303-26-7. | es_ES |
dc.description.references | A. Defant, U. Schwarting, and P. Sevilla-Peris, Estimates for vector valued Dirichlet polynomials, Monatsh. Math. 175 (2014), 89–116. | es_ES |
dc.description.references | J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995. | es_ES |
dc.description.references | P. Hartman, On Dirichlet series involving random coefficients, Amer. J. Math. 61 (1939), 955–964. | es_ES |
dc.description.references | H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), 1–37. | es_ES |
dc.description.references | A. Hildebrand, and G. Tenenbaum, Integers without large prime factors, J. Thor. Nombres Bordeaux 5 (1993), 411–484. | es_ES |
dc.description.references | S. V. Konyagin and H. Queffélec, The translation 1/2 in the theory of Dirichlet series, Real Anal. Exchange 27 (2001/02) 155–175. | es_ES |
dc.description.references | J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Springer-Verlag, Berlin, 1979. | es_ES |
dc.description.references | B. Maurizi and H. Queffélec, Some remarks on the algebra of bounded Dirichlet series, J. Fourier Anal. Appl. 16 (2010), 676–692. | es_ES |
dc.description.references | H. Queffélec, H. Bohr’s vision of ordinary Dirichlet series; old and new results, J. Anal. 3 (1995), 43–60. | es_ES |
dc.description.references | H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series, Hindustan Book Agency, New Delhi, 2013. | es_ES |
dc.description.references | G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995. | es_ES |