- -

Almost sure-sign convergence of Hardy-type Dirichlet series

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Almost sure-sign convergence of Hardy-type Dirichlet series

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carando, Daniel es_ES
dc.contributor.author Defant, A. es_ES
dc.contributor.author Sevilla Peris, Pablo es_ES
dc.date.accessioned 2020-04-29T07:04:57Z
dc.date.available 2020-04-29T07:04:57Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0021-7670 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141961
dc.description.abstract [EN] Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series is uniformly a.s.- sign convergent (i.e., converges uniformly for almost all sequences of signs epsilon (n) = +/- 1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space. es_ES
dc.description.sponsorship Supported by CONICET-PIP 11220130100329CO, PICT 2015-2299 and UBACyT 20020130100474BA. Supported by MICINN MTM2017-83262-C2-1-P. Supported by MICINN MTM2017-83262-C2-1-P and UPV-SP20120700. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal d Analyse Mathématique es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Almost sure-sign convergence of Hardy-type Dirichlet series es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11854-018-0034-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICET//PIP 11220130100329CO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANPCyT//PICT-2015-2299/AR/Análisis no lineal en dimensión infinita y geometría de espacios de Banach/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UBA/UBACyT/20020130100474BA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20120700/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Carando, D.; Defant, A.; Sevilla Peris, P. (2018). Almost sure-sign convergence of Hardy-type Dirichlet series. Journal d Analyse Mathématique. 135(1):225-247. https://doi.org/10.1007/s11854-018-0034-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11854-018-0034-y es_ES
dc.description.upvformatpinicio 225 es_ES
dc.description.upvformatpfin 247 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 135 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\384911 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Universidad de Buenos Aires es_ES
dc.contributor.funder Agencia Nacional de Promoción Científica y Tecnológica, Argentina es_ES
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references A. Aleman, J.-F. Olsen, and E. Saksman, Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN 16 (2014), 4368–4378. es_ES
dc.description.references R. Balasubramanian, B. Calado, and H. Queffélec, The Bohr inequality for ordinary Dirichlet series Studia Math. 175 (2006), 285–304. es_ES
dc.description.references F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), 203–236. es_ES
dc.description.references F. Bayart, A. Defant, L. Frerick, M. Maestre, and P. Sevilla-Peris, Monomial series expansion of Hp-functions and multipliers ofHp-Dirichlet series, Math. Ann. 368 (2017), 837–876. es_ES
dc.description.references F. Bayart, D. Pellegrino, and J. B. Seoane-Sepúlveda, The Bohr radius of the n-dimensional polydisk is equivalent to $$\sqrt {\left( {\log n} \right)/n} $$ ( log n ) / n , Adv. Math. 264 (2014), 726–746. es_ES
dc.description.references F. Bayart, H. Queffélec, and K. Seip, Approximation numbers of composition operators on Hp spaces of Dirichlet series, Ann. Inst. Fourier (Grenoble) 66 (2016), 551–588. es_ES
dc.description.references H. F. Bohnenblust and E. Hille. On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), 600–622. es_ES
dc.description.references H. Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen $$\sum {\frac{{{a_n}}}{{{n^s}}}} $$ ∑ a n n s , Nachr. Ges.Wiss. Göttingen, Math. Phys. Kl., 1913, pp. 441–488. es_ES
dc.description.references D. Carando, A. Defant, and P. Sevilla-Peris, Bohr’s absolute convergence problem for Hp- Dirichlet series in Banach spaces, Anal. PDE 7 (2014), 513–527. es_ES
dc.description.references D. Carando, A. Defant, and P. Sevilla-Peris, Some polynomial versions of cotype and applications, J. Funct. Anal. 270 (2016), 68–87. es_ES
dc.description.references B. J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), 112–142. es_ES
dc.description.references R. de la Bretèche. Sur l’ordre de grandeur des polynômes de Dirichlet, Acta Arith. 134 (2008), 141–148. es_ES
dc.description.references A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounäies, and K. Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011), 485–497. es_ES
dc.description.references A. Defant, D. García, M. Maestre, and D. Pérez-García, Bohr’s strip for vector valued Dirichlet series, Math. Ann. 342 (2008), 533–555. es_ES
dc.description.references A. Defant, M. Maestre, and U. Schwarting, Bohr radii of vector valued holomorphic functions, Adv. Math. 231 (2012), 2837–2857. es_ES
dc.description.references A. Defant and A. Pérez, Hardy spaces of vector-valued Dirichlet series, StudiaMath. (to appear), 2018 DOI: 10.4064/sm170303-26-7. es_ES
dc.description.references A. Defant, U. Schwarting, and P. Sevilla-Peris, Estimates for vector valued Dirichlet polynomials, Monatsh. Math. 175 (2014), 89–116. es_ES
dc.description.references J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995. es_ES
dc.description.references P. Hartman, On Dirichlet series involving random coefficients, Amer. J. Math. 61 (1939), 955–964. es_ES
dc.description.references H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), 1–37. es_ES
dc.description.references A. Hildebrand, and G. Tenenbaum, Integers without large prime factors, J. Thor. Nombres Bordeaux 5 (1993), 411–484. es_ES
dc.description.references S. V. Konyagin and H. Queffélec, The translation 1/2 in the theory of Dirichlet series, Real Anal. Exchange 27 (2001/02) 155–175. es_ES
dc.description.references J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Springer-Verlag, Berlin, 1979. es_ES
dc.description.references B. Maurizi and H. Queffélec, Some remarks on the algebra of bounded Dirichlet series, J. Fourier Anal. Appl. 16 (2010), 676–692. es_ES
dc.description.references H. Queffélec, H. Bohr’s vision of ordinary Dirichlet series; old and new results, J. Anal. 3 (1995), 43–60. es_ES
dc.description.references H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series, Hindustan Book Agency, New Delhi, 2013. es_ES
dc.description.references G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem