- -

Almost sure-sign convergence of Hardy-type Dirichlet series

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Almost sure-sign convergence of Hardy-type Dirichlet series

Mostrar el registro completo del ítem

Carando, D.; Defant, A.; Sevilla Peris, P. (2018). Almost sure-sign convergence of Hardy-type Dirichlet series. Journal d Analyse Mathématique. 135(1):225-247. https://doi.org/10.1007/s11854-018-0034-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141961

Ficheros en el ítem

Metadatos del ítem

Título: Almost sure-sign convergence of Hardy-type Dirichlet series
Autor: Carando, Daniel Defant, A. Sevilla Peris, Pablo
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series is uniformly a.s.- sign convergent (i.e., converges uniformly for almost all sequences of signs ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal d Analyse Mathématique. (issn: 0021-7670 )
DOI: 10.1007/s11854-018-0034-y
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11854-018-0034-y
Código del Proyecto:
info:eu-repo/grantAgreement/CONICET//PIP 11220130100329CO/
info:eu-repo/grantAgreement/ANPCyT//PICT-2015-2299/AR/Análisis no lineal en dimensión infinita y geometría de espacios de Banach/
info:eu-repo/grantAgreement/UBA/UBACyT/20020130100474BA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/
info:eu-repo/grantAgreement/UPV//SP20120700/
Agradecimientos:
Supported by CONICET-PIP 11220130100329CO, PICT 2015-2299 and UBACyT 20020130100474BA. Supported by MICINN MTM2017-83262-C2-1-P. Supported by MICINN MTM2017-83262-C2-1-P and UPV-SP20120700.
Tipo: Artículo

References

A. Aleman, J.-F. Olsen, and E. Saksman, Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN 16 (2014), 4368–4378.

R. Balasubramanian, B. Calado, and H. Queffélec, The Bohr inequality for ordinary Dirichlet series Studia Math. 175 (2006), 285–304.

F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), 203–236. [+]
A. Aleman, J.-F. Olsen, and E. Saksman, Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN 16 (2014), 4368–4378.

R. Balasubramanian, B. Calado, and H. Queffélec, The Bohr inequality for ordinary Dirichlet series Studia Math. 175 (2006), 285–304.

F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), 203–236.

F. Bayart, A. Defant, L. Frerick, M. Maestre, and P. Sevilla-Peris, Monomial series expansion of Hp-functions and multipliers ofHp-Dirichlet series, Math. Ann. 368 (2017), 837–876.

F. Bayart, D. Pellegrino, and J. B. Seoane-Sepúlveda, The Bohr radius of the n-dimensional polydisk is equivalent to $$\sqrt {\left( {\log n} \right)/n} $$ ( log n ) / n , Adv. Math. 264 (2014), 726–746.

F. Bayart, H. Queffélec, and K. Seip, Approximation numbers of composition operators on Hp spaces of Dirichlet series, Ann. Inst. Fourier (Grenoble) 66 (2016), 551–588.

H. F. Bohnenblust and E. Hille. On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), 600–622.

H. Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichlet–schen Reihen $$\sum {\frac{{{a_n}}}{{{n^s}}}} $$ ∑ a n n s , Nachr. Ges.Wiss. Göttingen, Math. Phys. Kl., 1913, pp. 441–488.

D. Carando, A. Defant, and P. Sevilla-Peris, Bohr’s absolute convergence problem for Hp- Dirichlet series in Banach spaces, Anal. PDE 7 (2014), 513–527.

D. Carando, A. Defant, and P. Sevilla-Peris, Some polynomial versions of cotype and applications, J. Funct. Anal. 270 (2016), 68–87.

B. J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), 112–142.

R. de la Bretèche. Sur l’ordre de grandeur des polynômes de Dirichlet, Acta Arith. 134 (2008), 141–148.

A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounäies, and K. Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011), 485–497.

A. Defant, D. García, M. Maestre, and D. Pérez-García, Bohr’s strip for vector valued Dirichlet series, Math. Ann. 342 (2008), 533–555.

A. Defant, M. Maestre, and U. Schwarting, Bohr radii of vector valued holomorphic functions, Adv. Math. 231 (2012), 2837–2857.

A. Defant and A. Pérez, Hardy spaces of vector-valued Dirichlet series, StudiaMath. (to appear), 2018 DOI: 10.4064/sm170303-26-7.

A. Defant, U. Schwarting, and P. Sevilla-Peris, Estimates for vector valued Dirichlet polynomials, Monatsh. Math. 175 (2014), 89–116.

J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.

P. Hartman, On Dirichlet series involving random coefficients, Amer. J. Math. 61 (1939), 955–964.

H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), 1–37.

A. Hildebrand, and G. Tenenbaum, Integers without large prime factors, J. Thor. Nombres Bordeaux 5 (1993), 411–484.

S. V. Konyagin and H. Queffélec, The translation 1/2 in the theory of Dirichlet series, Real Anal. Exchange 27 (2001/02) 155–175.

J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Springer-Verlag, Berlin, 1979.

B. Maurizi and H. Queffélec, Some remarks on the algebra of bounded Dirichlet series, J. Fourier Anal. Appl. 16 (2010), 676–692.

H. Queffélec, H. Bohr’s vision of ordinary Dirichlet series; old and new results, J. Anal. 3 (1995), 43–60.

H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series, Hindustan Book Agency, New Delhi, 2013.

G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem