- -

epsilon-Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C9h Peptide to Induce Apoptosis in Cancer Cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

epsilon-Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C9h Peptide to Induce Apoptosis in Cancer Cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author De La Torre-Paredes, Cristina es_ES
dc.contributor.author Domínguez-Berrocal, L. es_ES
dc.contributor.author Murguía, Jose R. es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Bravo,J. es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.date.accessioned 2020-04-29T07:05:00Z
dc.date.available 2020-04-29T07:05:00Z
dc.date.issued 2018-02 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141963
dc.description.abstract [EN] Apoptotic signaling pathways are altered in numerous pathologies such as cancer. In this scenario, caspase-9/PP2Ac alpha interaction constitutes a key target with pharmacological interest to re-establish apoptosis in tumor cells. Very recently, a short peptide (C9h) known to disrupt caspase-9/PP2Ac alpha interaction with subsequent apoptosis induction was described. Here, we prepared two sets of mesoporous silica nanoparticles loaded with safraninO (S2) or with C9h peptide (S4) and functionalized with epsilon-polylysine as capping unit. Aqueous suspensions of both nanoparticles showed negligible cargo release whereas in the presence of pronase, a marked delivery of safraninO or C9h was observed. Confocal microscopy studies carried out with HeLa cells indicated that both materials were internalized and were able to release their entrapped cargos. Besides, a marked decrease in HeLa cell viability (ca. 50%) was observed when treated with C9h-loaded S4 nanoparticles. Moreover, S4 provides peptide protection from degradation additionally allowing for a dose reduction to observe an apoptotic effect when compared with C9h alone or in combination with a cell-penetrating peptide (i.e., Mut3DPT-C9h). Flow cytometry studies, by means of Annexin V-FITC staining, showed the activation of apoptotic pathways in HeLa as a consequence of S4 internalization, release of C9h peptide and disruption of caspase-9/PP2Ac alpha interaction. es_ES
dc.description.sponsorship The authors wish to express their gratitude to the Spanish government (Projects MAT2015-64139-C4-1, SAF2012-31405, SAF2015-67077-R, AGL2015-70235-C2-2-R (MINECO/FEDER)), the Generalitat Valencia (Projects PROMETEOII/2014/047, PROMETEO/2012/061) and the CIBER-BBN for their support. C.T. is grateful to the Spanish Ministry of Science and Innovation for her Ph.D. fellowship. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Apoptosis es_ES
dc.subject Caspase-9 es_ES
dc.subject Drug delivery es_ES
dc.subject Gated nanoparticles es_ES
dc.subject Peptides es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title epsilon-Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C9h Peptide to Induce Apoptosis in Cancer Cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201704161 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SAF2012-31405/ES/ESTRUCTURA Y FUNCION DE COMPLEJOS INVOLUCRADOS EN CANCER, METASTASIS Y APOPTOSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SAF2015-67077-R/ES/ESTRUCTURA DE COMPONENTES DE LA VIA DE BIOGENESIS DEL RIBOSOMA Y DISRUPCION DEL PROCESAMIENTO DEL RNA RIBOSOMICO COMO TERAPIA CONTRA EL CANCER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F061/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation De La Torre-Paredes, C.; Domínguez-Berrocal, L.; Murguía, JR.; Marcos Martínez, MD.; Martínez-Máñez, R.; Bravo, J.; Sancenón Galarza, F. (2018). epsilon-Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal. 24(8):1890-1897. https://doi.org/10.1002/chem.201704161 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201704161 es_ES
dc.description.upvformatpinicio 1890 es_ES
dc.description.upvformatpfin 1897 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 8 es_ES
dc.identifier.pmid 29193344 es_ES
dc.relation.pasarela S\354089 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Lyon, M. A., Ducruet, A. P., Wipf, P., & Lazo, J. S. (2002). Dual-specificity phosphatases as targets for antineoplastic agents. Nature Reviews Drug Discovery, 1(12), 961-976. doi:10.1038/nrd963 es_ES
dc.description.references Ducret, F., Turc-Baron, C., Pointet, P., Vernin, G., Skowron, O., Mc Gregor, B., … Vincent, M. (2005). Tumeur à rénine. À propos d’un nouveau cas diagnostiqué au cours d’une grossesse. Néphrologie & Thérapeutique, 1(1), 52-61. doi:10.1016/j.nephro.2005.01.008 es_ES
dc.description.references Lazar, D. F., & Saltiel, A. R. (2006). Lipid phosphatases as drug discovery targets for type 2 diabetes. Nature Reviews Drug Discovery, 5(4), 333-342. doi:10.1038/nrd2007 es_ES
dc.description.references Tonks, N. K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews Molecular Cell Biology, 7(11), 833-846. doi:10.1038/nrm2039 es_ES
dc.description.references Liu, J., Farmer, J. D., Lane, W. S., Friedman, J., Weissman, I., & Schreiber, S. L. (1991). Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell, 66(4), 807-815. doi:10.1016/0092-8674(91)90124-h es_ES
dc.description.references Li, Y. M., & Casida, J. E. (1992). Cantharidin-binding protein: identification as protein phosphatase 2A. Proceedings of the National Academy of Sciences, 89(24), 11867-11870. doi:10.1073/pnas.89.24.11867 es_ES
dc.description.references Honkanen, R. E. (1993). Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A. FEBS Letters, 330(3), 283-286. doi:10.1016/0014-5793(93)80889-3 es_ES
dc.description.references Walsh, A. H., Cheng, A., & Honkanen, R. E. (1997). Fostriecin, an antitumor antibiotic with inhibitory activity against serine/threonine protein phosphatases types 1 (PP1) and 2A (PP2A), is highly selective for PP2A. FEBS Letters, 416(3), 230-234. doi:10.1016/s0014-5793(97)01210-6 es_ES
dc.description.references Medyouf, H., Alcalde, H., Berthier, C., Guillemin, M. C., dos Santos, N. R., Janin, A., … Ghysdael, J. (2007). Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nature Medicine, 13(6), 736-741. doi:10.1038/nm1588 es_ES
dc.description.references Martinez-Martinez, S., & Redondo, J. (2004). Inhibitors of the Calcineurin / NFAT Pathway. Current Medicinal Chemistry, 11(8), 997-1007. doi:10.2174/0929867043455576 es_ES
dc.description.references Arrouss, I., Nemati, F., Roncal, F., Wislez, M., Dorgham, K., Vallerand, D., … Rebollo, A. (2013). Specific Targeting of Caspase-9/PP2A Interaction as Potential New Anti-Cancer Therapy. PLoS ONE, 8(4), e60816. doi:10.1371/journal.pone.0060816 es_ES
dc.description.references Arrouss, I., Decaudin, D., Choquet, S., Azar, N., Parizot, C., Zini, J., … Rebollo, A. (2015). Cell Penetrating Peptides as a Therapeutic Strategy in Chronic Lymphocytic Leukemia. Protein & Peptide Letters, 22(6), 539-546. doi:10.2174/0929866522666150216115352 es_ES
dc.description.references Fominaya, J., Bravo, J., & Rebollo, A. (2015). Strategies to stabilize cell penetrating peptides forin vivoapplications. Therapeutic Delivery, 6(10), 1171-1194. doi:10.4155/tde.15.51 es_ES
dc.description.references Fominaya, J., Bravo, J., Decaudin, D., Brossa, J. Y., Nemati, F., & Rebollo, A. (2015). Enhanced serum proteolysis resistance of cell-penetrating peptides. Therapeutic Delivery, 6(2), 139-147. doi:10.4155/tde.14.100 es_ES
dc.description.references Primeau, A. J. (2005). The Distribution of the Anticancer Drug Doxorubicin in Relation to Blood Vessels in Solid Tumors. Clinical Cancer Research, 11(24), 8782-8788. doi:10.1158/1078-0432.ccr-05-1664 es_ES
dc.description.references Izquierdo, M. A., Shoemaker, R. H., Flens, M. J., Scheffer, G. L., Wu, L., Prather, T. R., & Scheper, R. J. (1996). Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines. International Journal of Cancer, 65(2), 230-237. doi:10.1002/(sici)1097-0215(19960117)65:2<230::aid-ijc17>3.0.co;2-h es_ES
dc.description.references Liang, X.-J., Chen, C., Zhao, Y., & Wang, P. C. (2009). Circumventing Tumor Resistance to Chemotherapy by Nanotechnology. Multi-Drug Resistance in Cancer, 467-488. doi:10.1007/978-1-60761-416-6_21 es_ES
dc.description.references He, Q., & Shi, J. (2013). MSN Anti-Cancer Nanomedicines: Chemotherapy Enhancement, Overcoming of Drug Resistance, and Metastasis Inhibition. Advanced Materials, 26(3), 391-411. doi:10.1002/adma.201303123 es_ES
dc.description.references Ding, C., & Li, Z. (2017). A review of drug release mechanisms from nanocarrier systems. Materials Science and Engineering: C, 76, 1440-1453. doi:10.1016/j.msec.2017.03.130 es_ES
dc.description.references Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j es_ES
dc.description.references Tibbitt, M. W., Dahlman, J. E., & Langer, R. (2016). Emerging Frontiers in Drug Delivery. Journal of the American Chemical Society, 138(3), 704-717. doi:10.1021/jacs.5b09974 es_ES
dc.description.references Mai, W. X., & Meng, H. (2012). Mesoporous silica nanoparticles: A multifunctional nano therapeutic system. Integrative Biology, 5(1), 19-28. doi:10.1039/c2ib20137b es_ES
dc.description.references Doadrio, A., Salinas, A., Sánchez-Montero, J., & Vallet-Regí, M. (2015). Drug release from ordered mesoporous silicas. Current Pharmaceutical Design, 21(42), 6213-6819. doi:10.2174/1381612822666151106121419 es_ES
dc.description.references Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t es_ES
dc.description.references Gagliardi, M. (2017). Recent Advances in Preclinical Studies and Potential Applications of Dendrimers as Drug Carriers in the Central Nervous System. Current Pharmaceutical Design, 23(21). doi:10.2174/1381612823666170313124811 es_ES
dc.description.references Zhang, R. X., Ahmed, T., Li, L. Y., Li, J., Abbasi, A. Z., & Wu, X. Y. (2017). Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale, 9(4), 1334-1355. doi:10.1039/c6nr08486a es_ES
dc.description.references Guo, X., Wang, L., Wei, X., & Zhou, S. (2016). Polymer-based drug delivery systems for cancer treatment. Journal of Polymer Science Part A: Polymer Chemistry, 54(22), 3525-3550. doi:10.1002/pola.28252 es_ES
dc.description.references Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g es_ES
dc.description.references Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., … Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313-327. doi:10.1016/j.nano.2014.09.014 es_ES
dc.description.references Sun, R., Wang, W., Wen, Y., & Zhang, X. (2015). Recent Advance on Mesoporous Silica Nanoparticles-Based Controlled Release System: Intelligent Switches Open up New Horizon. Nanomaterials, 5(4), 2019-2053. doi:10.3390/nano5042019 es_ES
dc.description.references Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003. doi:10.1038/nmat3776 es_ES
dc.description.references Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 46(3), 792-801. doi:10.1021/ar3000986 es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663 es_ES
dc.description.references Agostini, A., Mondragón, L., Coll, C., Aznar, E., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2012). Dual Enzyme-Triggered Controlled Release on Capped Nanometric Silica Mesoporous Supports. ChemistryOpen, 1(1), 17-20. doi:10.1002/open.201200003 es_ES
dc.description.references Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210k es_ES
dc.description.references Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139 es_ES
dc.description.references De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822 es_ES
dc.description.references De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g es_ES
dc.description.references Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090 es_ES
dc.description.references Bringas, E., Köysüren, Ö., Quach, D. V., Mahmoudi, M., Aznar, E., Roehling, J. D., … Stroeve, P. (2012). Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chemical Communications, 48(45), 5647. doi:10.1039/c2cc31563g es_ES
dc.description.references Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 es_ES
dc.description.references Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157k es_ES
dc.description.references Pascual, L., Baroja, I., Aznar, E., Sancenón, F., Marcos, M. D., Murguía, J. R., … Martínez-Máñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306g es_ES
dc.description.references Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln. Angewandte Chemie, 126(46), 12838-12843. doi:10.1002/ange.201405580 es_ES
dc.description.references Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511 es_ES
dc.description.references Lu, J., Liong, M., Li, Z., Zink, J. I., & Tamanoi, F. (2010). Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. Small, 6(16), 1794-1805. doi:10.1002/smll.201000538 es_ES
dc.description.references Baeza, A., Manzano, M., Colilla, M., & Vallet-Regí, M. (2016). Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomaterials Science, 4(5), 803-813. doi:10.1039/c6bm00039h es_ES
dc.description.references Rosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges. Nanoscale, 2(10), 1870. doi:10.1039/c0nr00156b es_ES
dc.description.references Poh, S., Lin, J. B., & Panitch, A. (2015). Release of Anti-inflammatory Peptides from Thermosensitive Nanoparticles with Degradable Cross-Links Suppresses Pro-inflammatory Cytokine Production. Biomacromolecules, 16(4), 1191-1200. doi:10.1021/bm501849p es_ES
dc.description.references Patel, A., Cholkar, K., & Mitra, A. K. (2014). Recent developments in protein and peptide parenteral delivery approaches. Therapeutic Delivery, 5(3), 337-365. doi:10.4155/tde.14.5 es_ES
dc.description.references Sung, B., Kim, C., & Kim, M.-H. (2015). Biodegradable colloidal microgels with tunable thermosensitive volume phase transitions for controllable drug delivery. Journal of Colloid and Interface Science, 450, 26-33. doi:10.1016/j.jcis.2015.02.068 es_ES
dc.description.references Witting, M., Molina, M., Obst, K., Plank, R., Eckl, K. M., Hennies, H. C., … Hedtrich, S. (2015). Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1179-1187. doi:10.1016/j.nano.2015.02.017 es_ES
dc.description.references Yu, E., Galiana, I., Martínez-Máñez, R., Stroeve, P., Marcos, M. D., Aznar, E., … Amorós, P. (2015). Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme. Colloids and Surfaces B: Biointerfaces, 135, 652-660. doi:10.1016/j.colsurfb.2015.06.048 es_ES
dc.description.references Braun, K., Pochert, A., Lindén, M., Davoudi, M., Schmidtchen, A., Nordström, R., & Malmsten, M. (2016). Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. Journal of Colloid and Interface Science, 475, 161-170. doi:10.1016/j.jcis.2016.05.002 es_ES
dc.description.references Zhou, C., Li, P., Qi, X., Sharif, A. R. M., Poon, Y. F., Cao, Y., … Chan-Park, M. B. (2011). A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials, 32(11), 2704-2712. doi:10.1016/j.biomaterials.2010.12.040 es_ES
dc.description.references SHIH, I., SHEN, M., & VAN, Y. (2006). Microbial synthesis of poly(ε-lysine) and its various applications. Bioresource Technology, 97(9), 1148-1159. doi:10.1016/j.biortech.2004.08.012 es_ES
dc.description.references Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7 es_ES
dc.description.references Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148 es_ES
dc.description.references Greenfield, N. J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6), 2876-2890. doi:10.1038/nprot.2006.202 es_ES
dc.description.references Mickan, A., Sarko, D., Haberkorn, U., & Mier, W. (2014). Rational Design of CPP-based Drug Delivery Systems: Considerations from Pharmacokinetics. Current Pharmaceutical Biotechnology, 15(3), 200-209. doi:10.2174/138920101503140822101814 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem