Mostrar el registro sencillo del ítem
dc.contributor.author | De La Torre-Paredes, Cristina | es_ES |
dc.contributor.author | Domínguez-Berrocal, L. | es_ES |
dc.contributor.author | Murguía, Jose R. | es_ES |
dc.contributor.author | Marcos Martínez, María Dolores | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.contributor.author | Bravo,J. | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.date.accessioned | 2020-04-29T07:05:00Z | |
dc.date.available | 2020-04-29T07:05:00Z | |
dc.date.issued | 2018-02 | es_ES |
dc.identifier.issn | 0947-6539 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141963 | |
dc.description.abstract | [EN] Apoptotic signaling pathways are altered in numerous pathologies such as cancer. In this scenario, caspase-9/PP2Ac alpha interaction constitutes a key target with pharmacological interest to re-establish apoptosis in tumor cells. Very recently, a short peptide (C9h) known to disrupt caspase-9/PP2Ac alpha interaction with subsequent apoptosis induction was described. Here, we prepared two sets of mesoporous silica nanoparticles loaded with safraninO (S2) or with C9h peptide (S4) and functionalized with epsilon-polylysine as capping unit. Aqueous suspensions of both nanoparticles showed negligible cargo release whereas in the presence of pronase, a marked delivery of safraninO or C9h was observed. Confocal microscopy studies carried out with HeLa cells indicated that both materials were internalized and were able to release their entrapped cargos. Besides, a marked decrease in HeLa cell viability (ca. 50%) was observed when treated with C9h-loaded S4 nanoparticles. Moreover, S4 provides peptide protection from degradation additionally allowing for a dose reduction to observe an apoptotic effect when compared with C9h alone or in combination with a cell-penetrating peptide (i.e., Mut3DPT-C9h). Flow cytometry studies, by means of Annexin V-FITC staining, showed the activation of apoptotic pathways in HeLa as a consequence of S4 internalization, release of C9h peptide and disruption of caspase-9/PP2Ac alpha interaction. | es_ES |
dc.description.sponsorship | The authors wish to express their gratitude to the Spanish government (Projects MAT2015-64139-C4-1, SAF2012-31405, SAF2015-67077-R, AGL2015-70235-C2-2-R (MINECO/FEDER)), the Generalitat Valencia (Projects PROMETEOII/2014/047, PROMETEO/2012/061) and the CIBER-BBN for their support. C.T. is grateful to the Spanish Ministry of Science and Innovation for her Ph.D. fellowship. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Apoptosis | es_ES |
dc.subject | Caspase-9 | es_ES |
dc.subject | Drug delivery | es_ES |
dc.subject | Gated nanoparticles | es_ES |
dc.subject | Peptides | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | epsilon-Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C9h Peptide to Induce Apoptosis in Cancer Cells | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/chem.201704161 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SAF2012-31405/ES/ESTRUCTURA Y FUNCION DE COMPLEJOS INVOLUCRADOS EN CANCER, METASTASIS Y APOPTOSIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SAF2015-67077-R/ES/ESTRUCTURA DE COMPONENTES DE LA VIA DE BIOGENESIS DEL RIBOSOMA Y DISRUPCION DEL PROCESAMIENTO DEL RNA RIBOSOMICO COMO TERAPIA CONTRA EL CANCER/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F061/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | De La Torre-Paredes, C.; Domínguez-Berrocal, L.; Murguía, JR.; Marcos Martínez, MD.; Martínez-Máñez, R.; Bravo, J.; Sancenón Galarza, F. (2018). epsilon-Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal. 24(8):1890-1897. https://doi.org/10.1002/chem.201704161 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/chem.201704161 | es_ES |
dc.description.upvformatpinicio | 1890 | es_ES |
dc.description.upvformatpfin | 1897 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.pmid | 29193344 | es_ES |
dc.relation.pasarela | S\354089 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Lyon, M. A., Ducruet, A. P., Wipf, P., & Lazo, J. S. (2002). Dual-specificity phosphatases as targets for antineoplastic agents. Nature Reviews Drug Discovery, 1(12), 961-976. doi:10.1038/nrd963 | es_ES |
dc.description.references | Ducret, F., Turc-Baron, C., Pointet, P., Vernin, G., Skowron, O., Mc Gregor, B., … Vincent, M. (2005). Tumeur à rénine. À propos d’un nouveau cas diagnostiqué au cours d’une grossesse. Néphrologie & Thérapeutique, 1(1), 52-61. doi:10.1016/j.nephro.2005.01.008 | es_ES |
dc.description.references | Lazar, D. F., & Saltiel, A. R. (2006). Lipid phosphatases as drug discovery targets for type 2 diabetes. Nature Reviews Drug Discovery, 5(4), 333-342. doi:10.1038/nrd2007 | es_ES |
dc.description.references | Tonks, N. K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews Molecular Cell Biology, 7(11), 833-846. doi:10.1038/nrm2039 | es_ES |
dc.description.references | Liu, J., Farmer, J. D., Lane, W. S., Friedman, J., Weissman, I., & Schreiber, S. L. (1991). Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell, 66(4), 807-815. doi:10.1016/0092-8674(91)90124-h | es_ES |
dc.description.references | Li, Y. M., & Casida, J. E. (1992). Cantharidin-binding protein: identification as protein phosphatase 2A. Proceedings of the National Academy of Sciences, 89(24), 11867-11870. doi:10.1073/pnas.89.24.11867 | es_ES |
dc.description.references | Honkanen, R. E. (1993). Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A. FEBS Letters, 330(3), 283-286. doi:10.1016/0014-5793(93)80889-3 | es_ES |
dc.description.references | Walsh, A. H., Cheng, A., & Honkanen, R. E. (1997). Fostriecin, an antitumor antibiotic with inhibitory activity against serine/threonine protein phosphatases types 1 (PP1) and 2A (PP2A), is highly selective for PP2A. FEBS Letters, 416(3), 230-234. doi:10.1016/s0014-5793(97)01210-6 | es_ES |
dc.description.references | Medyouf, H., Alcalde, H., Berthier, C., Guillemin, M. C., dos Santos, N. R., Janin, A., … Ghysdael, J. (2007). Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nature Medicine, 13(6), 736-741. doi:10.1038/nm1588 | es_ES |
dc.description.references | Martinez-Martinez, S., & Redondo, J. (2004). Inhibitors of the Calcineurin / NFAT Pathway. Current Medicinal Chemistry, 11(8), 997-1007. doi:10.2174/0929867043455576 | es_ES |
dc.description.references | Arrouss, I., Nemati, F., Roncal, F., Wislez, M., Dorgham, K., Vallerand, D., … Rebollo, A. (2013). Specific Targeting of Caspase-9/PP2A Interaction as Potential New Anti-Cancer Therapy. PLoS ONE, 8(4), e60816. doi:10.1371/journal.pone.0060816 | es_ES |
dc.description.references | Arrouss, I., Decaudin, D., Choquet, S., Azar, N., Parizot, C., Zini, J., … Rebollo, A. (2015). Cell Penetrating Peptides as a Therapeutic Strategy in Chronic Lymphocytic Leukemia. Protein & Peptide Letters, 22(6), 539-546. doi:10.2174/0929866522666150216115352 | es_ES |
dc.description.references | Fominaya, J., Bravo, J., & Rebollo, A. (2015). Strategies to stabilize cell penetrating peptides forin vivoapplications. Therapeutic Delivery, 6(10), 1171-1194. doi:10.4155/tde.15.51 | es_ES |
dc.description.references | Fominaya, J., Bravo, J., Decaudin, D., Brossa, J. Y., Nemati, F., & Rebollo, A. (2015). Enhanced serum proteolysis resistance of cell-penetrating peptides. Therapeutic Delivery, 6(2), 139-147. doi:10.4155/tde.14.100 | es_ES |
dc.description.references | Primeau, A. J. (2005). The Distribution of the Anticancer Drug Doxorubicin in Relation to Blood Vessels in Solid Tumors. Clinical Cancer Research, 11(24), 8782-8788. doi:10.1158/1078-0432.ccr-05-1664 | es_ES |
dc.description.references | Izquierdo, M. A., Shoemaker, R. H., Flens, M. J., Scheffer, G. L., Wu, L., Prather, T. R., & Scheper, R. J. (1996). Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines. International Journal of Cancer, 65(2), 230-237. doi:10.1002/(sici)1097-0215(19960117)65:2<230::aid-ijc17>3.0.co;2-h | es_ES |
dc.description.references | Liang, X.-J., Chen, C., Zhao, Y., & Wang, P. C. (2009). Circumventing Tumor Resistance to Chemotherapy by Nanotechnology. Multi-Drug Resistance in Cancer, 467-488. doi:10.1007/978-1-60761-416-6_21 | es_ES |
dc.description.references | He, Q., & Shi, J. (2013). MSN Anti-Cancer Nanomedicines: Chemotherapy Enhancement, Overcoming of Drug Resistance, and Metastasis Inhibition. Advanced Materials, 26(3), 391-411. doi:10.1002/adma.201303123 | es_ES |
dc.description.references | Ding, C., & Li, Z. (2017). A review of drug release mechanisms from nanocarrier systems. Materials Science and Engineering: C, 76, 1440-1453. doi:10.1016/j.msec.2017.03.130 | es_ES |
dc.description.references | Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j | es_ES |
dc.description.references | Tibbitt, M. W., Dahlman, J. E., & Langer, R. (2016). Emerging Frontiers in Drug Delivery. Journal of the American Chemical Society, 138(3), 704-717. doi:10.1021/jacs.5b09974 | es_ES |
dc.description.references | Mai, W. X., & Meng, H. (2012). Mesoporous silica nanoparticles: A multifunctional nano therapeutic system. Integrative Biology, 5(1), 19-28. doi:10.1039/c2ib20137b | es_ES |
dc.description.references | Doadrio, A., Salinas, A., Sánchez-Montero, J., & Vallet-Regí, M. (2015). Drug release from ordered mesoporous silicas. Current Pharmaceutical Design, 21(42), 6213-6819. doi:10.2174/1381612822666151106121419 | es_ES |
dc.description.references | Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t | es_ES |
dc.description.references | Gagliardi, M. (2017). Recent Advances in Preclinical Studies and Potential Applications of Dendrimers as Drug Carriers in the Central Nervous System. Current Pharmaceutical Design, 23(21). doi:10.2174/1381612823666170313124811 | es_ES |
dc.description.references | Zhang, R. X., Ahmed, T., Li, L. Y., Li, J., Abbasi, A. Z., & Wu, X. Y. (2017). Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale, 9(4), 1334-1355. doi:10.1039/c6nr08486a | es_ES |
dc.description.references | Guo, X., Wang, L., Wei, X., & Zhou, S. (2016). Polymer-based drug delivery systems for cancer treatment. Journal of Polymer Science Part A: Polymer Chemistry, 54(22), 3525-3550. doi:10.1002/pola.28252 | es_ES |
dc.description.references | Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g | es_ES |
dc.description.references | Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., … Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313-327. doi:10.1016/j.nano.2014.09.014 | es_ES |
dc.description.references | Sun, R., Wang, W., Wen, Y., & Zhang, X. (2015). Recent Advance on Mesoporous Silica Nanoparticles-Based Controlled Release System: Intelligent Switches Open up New Horizon. Nanomaterials, 5(4), 2019-2053. doi:10.3390/nano5042019 | es_ES |
dc.description.references | Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003. doi:10.1038/nmat3776 | es_ES |
dc.description.references | Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 46(3), 792-801. doi:10.1021/ar3000986 | es_ES |
dc.description.references | Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663 | es_ES |
dc.description.references | Agostini, A., Mondragón, L., Coll, C., Aznar, E., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2012). Dual Enzyme-Triggered Controlled Release on Capped Nanometric Silica Mesoporous Supports. ChemistryOpen, 1(1), 17-20. doi:10.1002/open.201200003 | es_ES |
dc.description.references | Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210k | es_ES |
dc.description.references | Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139 | es_ES |
dc.description.references | De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822 | es_ES |
dc.description.references | De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g | es_ES |
dc.description.references | Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090 | es_ES |
dc.description.references | Bringas, E., Köysüren, Ö., Quach, D. V., Mahmoudi, M., Aznar, E., Roehling, J. D., … Stroeve, P. (2012). Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chemical Communications, 48(45), 5647. doi:10.1039/c2cc31563g | es_ES |
dc.description.references | Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 | es_ES |
dc.description.references | Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157k | es_ES |
dc.description.references | Pascual, L., Baroja, I., Aznar, E., Sancenón, F., Marcos, M. D., Murguía, J. R., … Martínez-Máñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306g | es_ES |
dc.description.references | Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln. Angewandte Chemie, 126(46), 12838-12843. doi:10.1002/ange.201405580 | es_ES |
dc.description.references | Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511 | es_ES |
dc.description.references | Lu, J., Liong, M., Li, Z., Zink, J. I., & Tamanoi, F. (2010). Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. Small, 6(16), 1794-1805. doi:10.1002/smll.201000538 | es_ES |
dc.description.references | Baeza, A., Manzano, M., Colilla, M., & Vallet-Regí, M. (2016). Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomaterials Science, 4(5), 803-813. doi:10.1039/c6bm00039h | es_ES |
dc.description.references | Rosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges. Nanoscale, 2(10), 1870. doi:10.1039/c0nr00156b | es_ES |
dc.description.references | Poh, S., Lin, J. B., & Panitch, A. (2015). Release of Anti-inflammatory Peptides from Thermosensitive Nanoparticles with Degradable Cross-Links Suppresses Pro-inflammatory Cytokine Production. Biomacromolecules, 16(4), 1191-1200. doi:10.1021/bm501849p | es_ES |
dc.description.references | Patel, A., Cholkar, K., & Mitra, A. K. (2014). Recent developments in protein and peptide parenteral delivery approaches. Therapeutic Delivery, 5(3), 337-365. doi:10.4155/tde.14.5 | es_ES |
dc.description.references | Sung, B., Kim, C., & Kim, M.-H. (2015). Biodegradable colloidal microgels with tunable thermosensitive volume phase transitions for controllable drug delivery. Journal of Colloid and Interface Science, 450, 26-33. doi:10.1016/j.jcis.2015.02.068 | es_ES |
dc.description.references | Witting, M., Molina, M., Obst, K., Plank, R., Eckl, K. M., Hennies, H. C., … Hedtrich, S. (2015). Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1179-1187. doi:10.1016/j.nano.2015.02.017 | es_ES |
dc.description.references | Yu, E., Galiana, I., Martínez-Máñez, R., Stroeve, P., Marcos, M. D., Aznar, E., … Amorós, P. (2015). Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme. Colloids and Surfaces B: Biointerfaces, 135, 652-660. doi:10.1016/j.colsurfb.2015.06.048 | es_ES |
dc.description.references | Braun, K., Pochert, A., Lindén, M., Davoudi, M., Schmidtchen, A., Nordström, R., & Malmsten, M. (2016). Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. Journal of Colloid and Interface Science, 475, 161-170. doi:10.1016/j.jcis.2016.05.002 | es_ES |
dc.description.references | Zhou, C., Li, P., Qi, X., Sharif, A. R. M., Poon, Y. F., Cao, Y., … Chan-Park, M. B. (2011). A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials, 32(11), 2704-2712. doi:10.1016/j.biomaterials.2010.12.040 | es_ES |
dc.description.references | SHIH, I., SHEN, M., & VAN, Y. (2006). Microbial synthesis of poly(ε-lysine) and its various applications. Bioresource Technology, 97(9), 1148-1159. doi:10.1016/j.biortech.2004.08.012 | es_ES |
dc.description.references | Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7 | es_ES |
dc.description.references | Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148 | es_ES |
dc.description.references | Greenfield, N. J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6), 2876-2890. doi:10.1038/nprot.2006.202 | es_ES |
dc.description.references | Mickan, A., Sarko, D., Haberkorn, U., & Mier, W. (2014). Rational Design of CPP-based Drug Delivery Systems: Considerations from Pharmacokinetics. Current Pharmaceutical Biotechnology, 15(3), 200-209. doi:10.2174/138920101503140822101814 | es_ES |