Lyon, M. A., Ducruet, A. P., Wipf, P., & Lazo, J. S. (2002). Dual-specificity phosphatases as targets for antineoplastic agents. Nature Reviews Drug Discovery, 1(12), 961-976. doi:10.1038/nrd963
Ducret, F., Turc-Baron, C., Pointet, P., Vernin, G., Skowron, O., Mc Gregor, B., … Vincent, M. (2005). Tumeur à rénine. À propos d’un nouveau cas diagnostiqué au cours d’une grossesse. Néphrologie & Thérapeutique, 1(1), 52-61. doi:10.1016/j.nephro.2005.01.008
Lazar, D. F., & Saltiel, A. R. (2006). Lipid phosphatases as drug discovery targets for type 2 diabetes. Nature Reviews Drug Discovery, 5(4), 333-342. doi:10.1038/nrd2007
[+]
Lyon, M. A., Ducruet, A. P., Wipf, P., & Lazo, J. S. (2002). Dual-specificity phosphatases as targets for antineoplastic agents. Nature Reviews Drug Discovery, 1(12), 961-976. doi:10.1038/nrd963
Ducret, F., Turc-Baron, C., Pointet, P., Vernin, G., Skowron, O., Mc Gregor, B., … Vincent, M. (2005). Tumeur à rénine. À propos d’un nouveau cas diagnostiqué au cours d’une grossesse. Néphrologie & Thérapeutique, 1(1), 52-61. doi:10.1016/j.nephro.2005.01.008
Lazar, D. F., & Saltiel, A. R. (2006). Lipid phosphatases as drug discovery targets for type 2 diabetes. Nature Reviews Drug Discovery, 5(4), 333-342. doi:10.1038/nrd2007
Tonks, N. K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews Molecular Cell Biology, 7(11), 833-846. doi:10.1038/nrm2039
Liu, J., Farmer, J. D., Lane, W. S., Friedman, J., Weissman, I., & Schreiber, S. L. (1991). Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell, 66(4), 807-815. doi:10.1016/0092-8674(91)90124-h
Li, Y. M., & Casida, J. E. (1992). Cantharidin-binding protein: identification as protein phosphatase 2A. Proceedings of the National Academy of Sciences, 89(24), 11867-11870. doi:10.1073/pnas.89.24.11867
Honkanen, R. E. (1993). Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A. FEBS Letters, 330(3), 283-286. doi:10.1016/0014-5793(93)80889-3
Walsh, A. H., Cheng, A., & Honkanen, R. E. (1997). Fostriecin, an antitumor antibiotic with inhibitory activity against serine/threonine protein phosphatases types 1 (PP1) and 2A (PP2A), is highly selective for PP2A. FEBS Letters, 416(3), 230-234. doi:10.1016/s0014-5793(97)01210-6
Medyouf, H., Alcalde, H., Berthier, C., Guillemin, M. C., dos Santos, N. R., Janin, A., … Ghysdael, J. (2007). Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nature Medicine, 13(6), 736-741. doi:10.1038/nm1588
Martinez-Martinez, S., & Redondo, J. (2004). Inhibitors of the Calcineurin / NFAT Pathway. Current Medicinal Chemistry, 11(8), 997-1007. doi:10.2174/0929867043455576
Arrouss, I., Nemati, F., Roncal, F., Wislez, M., Dorgham, K., Vallerand, D., … Rebollo, A. (2013). Specific Targeting of Caspase-9/PP2A Interaction as Potential New Anti-Cancer Therapy. PLoS ONE, 8(4), e60816. doi:10.1371/journal.pone.0060816
Arrouss, I., Decaudin, D., Choquet, S., Azar, N., Parizot, C., Zini, J., … Rebollo, A. (2015). Cell Penetrating Peptides as a Therapeutic Strategy in Chronic Lymphocytic Leukemia. Protein & Peptide Letters, 22(6), 539-546. doi:10.2174/0929866522666150216115352
Fominaya, J., Bravo, J., & Rebollo, A. (2015). Strategies to stabilize cell penetrating peptides forin vivoapplications. Therapeutic Delivery, 6(10), 1171-1194. doi:10.4155/tde.15.51
Fominaya, J., Bravo, J., Decaudin, D., Brossa, J. Y., Nemati, F., & Rebollo, A. (2015). Enhanced serum proteolysis resistance of cell-penetrating peptides. Therapeutic Delivery, 6(2), 139-147. doi:10.4155/tde.14.100
Primeau, A. J. (2005). The Distribution of the Anticancer Drug Doxorubicin in Relation to Blood Vessels in Solid Tumors. Clinical Cancer Research, 11(24), 8782-8788. doi:10.1158/1078-0432.ccr-05-1664
Izquierdo, M. A., Shoemaker, R. H., Flens, M. J., Scheffer, G. L., Wu, L., Prather, T. R., & Scheper, R. J. (1996). Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines. International Journal of Cancer, 65(2), 230-237. doi:10.1002/(sici)1097-0215(19960117)65:2<230::aid-ijc17>3.0.co;2-h
Liang, X.-J., Chen, C., Zhao, Y., & Wang, P. C. (2009). Circumventing Tumor Resistance to Chemotherapy by Nanotechnology. Multi-Drug Resistance in Cancer, 467-488. doi:10.1007/978-1-60761-416-6_21
He, Q., & Shi, J. (2013). MSN Anti-Cancer Nanomedicines: Chemotherapy Enhancement, Overcoming of Drug Resistance, and Metastasis Inhibition. Advanced Materials, 26(3), 391-411. doi:10.1002/adma.201303123
Ding, C., & Li, Z. (2017). A review of drug release mechanisms from nanocarrier systems. Materials Science and Engineering: C, 76, 1440-1453. doi:10.1016/j.msec.2017.03.130
Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j
Tibbitt, M. W., Dahlman, J. E., & Langer, R. (2016). Emerging Frontiers in Drug Delivery. Journal of the American Chemical Society, 138(3), 704-717. doi:10.1021/jacs.5b09974
Mai, W. X., & Meng, H. (2012). Mesoporous silica nanoparticles: A multifunctional nano therapeutic system. Integrative Biology, 5(1), 19-28. doi:10.1039/c2ib20137b
Doadrio, A., Salinas, A., Sánchez-Montero, J., & Vallet-Regí, M. (2015). Drug release from ordered mesoporous silicas. Current Pharmaceutical Design, 21(42), 6213-6819. doi:10.2174/1381612822666151106121419
Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t
Gagliardi, M. (2017). Recent Advances in Preclinical Studies and Potential Applications of Dendrimers as Drug Carriers in the Central Nervous System. Current Pharmaceutical Design, 23(21). doi:10.2174/1381612823666170313124811
Zhang, R. X., Ahmed, T., Li, L. Y., Li, J., Abbasi, A. Z., & Wu, X. Y. (2017). Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale, 9(4), 1334-1355. doi:10.1039/c6nr08486a
Guo, X., Wang, L., Wei, X., & Zhou, S. (2016). Polymer-based drug delivery systems for cancer treatment. Journal of Polymer Science Part A: Polymer Chemistry, 54(22), 3525-3550. doi:10.1002/pola.28252
Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g
Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., … Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313-327. doi:10.1016/j.nano.2014.09.014
Sun, R., Wang, W., Wen, Y., & Zhang, X. (2015). Recent Advance on Mesoporous Silica Nanoparticles-Based Controlled Release System: Intelligent Switches Open up New Horizon. Nanomaterials, 5(4), 2019-2053. doi:10.3390/nano5042019
Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003. doi:10.1038/nmat3776
Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 46(3), 792-801. doi:10.1021/ar3000986
Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456
Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663
Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663
Agostini, A., Mondragón, L., Coll, C., Aznar, E., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2012). Dual Enzyme-Triggered Controlled Release on Capped Nanometric Silica Mesoporous Supports. ChemistryOpen, 1(1), 17-20. doi:10.1002/open.201200003
Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210k
Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139
De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822
De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g
Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090
Bringas, E., Köysüren, Ö., Quach, D. V., Mahmoudi, M., Aznar, E., Roehling, J. D., … Stroeve, P. (2012). Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chemical Communications, 48(45), 5647. doi:10.1039/c2cc31563g
Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053
Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157k
Pascual, L., Baroja, I., Aznar, E., Sancenón, F., Marcos, M. D., Murguía, J. R., … Martínez-Máñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306g
Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln. Angewandte Chemie, 126(46), 12838-12843. doi:10.1002/ange.201405580
Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511
Lu, J., Liong, M., Li, Z., Zink, J. I., & Tamanoi, F. (2010). Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. Small, 6(16), 1794-1805. doi:10.1002/smll.201000538
Baeza, A., Manzano, M., Colilla, M., & Vallet-Regí, M. (2016). Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomaterials Science, 4(5), 803-813. doi:10.1039/c6bm00039h
Rosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges. Nanoscale, 2(10), 1870. doi:10.1039/c0nr00156b
Poh, S., Lin, J. B., & Panitch, A. (2015). Release of Anti-inflammatory Peptides from Thermosensitive Nanoparticles with Degradable Cross-Links Suppresses Pro-inflammatory Cytokine Production. Biomacromolecules, 16(4), 1191-1200. doi:10.1021/bm501849p
Patel, A., Cholkar, K., & Mitra, A. K. (2014). Recent developments in protein and peptide parenteral delivery approaches. Therapeutic Delivery, 5(3), 337-365. doi:10.4155/tde.14.5
Sung, B., Kim, C., & Kim, M.-H. (2015). Biodegradable colloidal microgels with tunable thermosensitive volume phase transitions for controllable drug delivery. Journal of Colloid and Interface Science, 450, 26-33. doi:10.1016/j.jcis.2015.02.068
Witting, M., Molina, M., Obst, K., Plank, R., Eckl, K. M., Hennies, H. C., … Hedtrich, S. (2015). Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1179-1187. doi:10.1016/j.nano.2015.02.017
Yu, E., Galiana, I., Martínez-Máñez, R., Stroeve, P., Marcos, M. D., Aznar, E., … Amorós, P. (2015). Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme. Colloids and Surfaces B: Biointerfaces, 135, 652-660. doi:10.1016/j.colsurfb.2015.06.048
Braun, K., Pochert, A., Lindén, M., Davoudi, M., Schmidtchen, A., Nordström, R., & Malmsten, M. (2016). Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. Journal of Colloid and Interface Science, 475, 161-170. doi:10.1016/j.jcis.2016.05.002
Zhou, C., Li, P., Qi, X., Sharif, A. R. M., Poon, Y. F., Cao, Y., … Chan-Park, M. B. (2011). A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials, 32(11), 2704-2712. doi:10.1016/j.biomaterials.2010.12.040
SHIH, I., SHEN, M., & VAN, Y. (2006). Microbial synthesis of poly(ε-lysine) and its various applications. Bioresource Technology, 97(9), 1148-1159. doi:10.1016/j.biortech.2004.08.012
Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7
Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148
Greenfield, N. J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6), 2876-2890. doi:10.1038/nprot.2006.202
Mickan, A., Sarko, D., Haberkorn, U., & Mier, W. (2014). Rational Design of CPP-based Drug Delivery Systems: Considerations from Pharmacokinetics. Current Pharmaceutical Biotechnology, 15(3), 200-209. doi:10.2174/138920101503140822101814
[-]