Mostrar el registro sencillo del ítem
dc.contributor.author | Quiles Chuliá, Mª Desamparados | es_ES |
dc.contributor.author | Campbell, G.M. | es_ES |
dc.contributor.author | Struck, S. | es_ES |
dc.contributor.author | Rohm, H. | es_ES |
dc.contributor.author | Hernando Hernando, Mª Isabel | es_ES |
dc.date.accessioned | 2020-04-29T07:05:09Z | |
dc.date.available | 2020-04-29T07:05:09Z | |
dc.date.issued | 2016-12 | es_ES |
dc.identifier.issn | 8755-9129 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141967 | |
dc.description.abstract | [EN] Fruit pomace is a by-product of the fruit processing industry composed of cell wall compounds, stems, and seeds of the fruit; after washing, drying, and milling, a material high in fiber and bioactive compounds is obtained. In bakery products, dried fruit pomace can be added to replace flour, sugar, or fat and thus reduce energy load while enhancing fiber and antioxidant contents. The high fiber content of fruit pomace, however, results in techno-functional interactions that affect physicochemical and sensory properties. In this article, different sources of fruit pomace are discussed along with their application in bread, brittle and soft bakery products, and extrudates. | es_ES |
dc.description.sponsorship | The funding, assured through the national partner organizations, is gratefully acknowledged: INIA in Spain, DEFRA in UK, and Federal Ministry of Education and Research via PTJ in Germany (grant 031B0004). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Food Reviews International | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Aerated structure | es_ES |
dc.subject | Bread | es_ES |
dc.subject | Consumer acceptability | es_ES |
dc.subject | Healthy bakery products | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Fiber from fruit pomace: A review of applications in cereals-based products | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/87559129.2016.1261299 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/291766/EU/Sustainable Food/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/BMBF//031B0004/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Quiles Chuliá, MD.; Campbell, G.; Struck, S.; Rohm, H.; Hernando Hernando, MI. (2016). Fiber from fruit pomace: A review of applications in cereals-based products. Food Reviews International. 34(2):162-181. https://doi.org/10.1080/87559129.2016.1261299 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/87559129.2016.1261299 | es_ES |
dc.description.upvformatpinicio | 162 | es_ES |
dc.description.upvformatpfin | 181 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 34 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\350170 | es_ES |
dc.contributor.funder | Bundesministerium für Bildung und Forschung, Alemania | es_ES |
dc.contributor.funder | Department for Environment, Food and Rural Affairs, UK Government | es_ES |
dc.contributor.funder | Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria | es_ES |
dc.description.references | Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395-401. doi:10.1016/j.foodchem.2004.04.036 | es_ES |
dc.description.references | Rohm, H., Brennan, C., Turner, C., Günther, E., Campbell, G., Hernando, I., … Kontogiorgos, V. (2015). Adding Value to Fruit Processing Waste: Innovative Ways to Incorporate Fibers from Berry Pomace in Baked and Extruded Cereal-based Foods—A SUSFOOD Project. Foods, 4(4), 690-697. doi:10.3390/foods4040690 | es_ES |
dc.description.references | Saura-Calixto, F. (1998). Antioxidant Dietary Fiber Product: A New Concept and a Potential Food Ingredient. Journal of Agricultural and Food Chemistry, 46(10), 4303-4306. doi:10.1021/jf9803841 | es_ES |
dc.description.references | Viebke, C., Al-Assaf, S., & Phillips, G. O. (2014). Food hydrocolloids and health claims. Bioactive Carbohydrates and Dietary Fibre, 4(2), 101-114. doi:10.1016/j.bcdf.2014.06.006 | es_ES |
dc.description.references | Lattimer, J. M., & Haub, M. D. (2010). Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients, 2(12), 1266-1289. doi:10.3390/nu2121266 | es_ES |
dc.description.references | Slavin, J. (2013). Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients, 5(4), 1417-1435. doi:10.3390/nu5041417 | es_ES |
dc.description.references | Struck, S., Gundel, L., Zahn, S., & Rohm, H. (2016). Fiber enriched reduced sugar muffins made from iso-viscous batters. LWT - Food Science and Technology, 65, 32-38. doi:10.1016/j.lwt.2015.07.053 | es_ES |
dc.description.references | Grigelmo-Miguel, N., & Martı́n-Belloso, O. (1999). Comparison of Dietary Fibre from By-products of Processing Fruits and Greens and from Cereals. LWT - Food Science and Technology, 32(8), 503-508. doi:10.1006/fstl.1999.0587 | es_ES |
dc.description.references | Wang, L., Xu, H., Yuan, F., Pan, Q., Fan, R., & Gao, Y. (2015). Physicochemical characterization of five types of citrus dietary fibers. Biocatalysis and Agricultural Biotechnology, 4(2), 250-258. doi:10.1016/j.bcab.2015.02.003 | es_ES |
dc.description.references | Martí, N., Saura, D., Fuentes’, E., Lizama, V., García, E., Mico-Ballester, M. J., & Lorente, J. (2011). Fiber from tangerine juice industry. Industrial Crops and Products, 33(1), 94-98. doi:10.1016/j.indcrop.2010.09.004 | es_ES |
dc.description.references | Iora, S. R. F., Maciel, G. M., Zielinski, A. A. F., da Silva, M. V., Pontes, P. V. de A., Haminiuk, C. W. I., & Granato, D. (2014). Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. International Journal of Food Science & Technology, 50(1), 62-69. doi:10.1111/ijfs.12583 | es_ES |
dc.description.references | Yu, J., & Ahmedna, M. (2012). Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science & Technology, 48(2), 221-237. doi:10.1111/j.1365-2621.2012.03197.x | es_ES |
dc.description.references | Milala, J., Kosmala, M., Sójka, M., Kołodziejczyk, K., Zbrzeźniak, M., & Markowski, J. (2011). Plum pomaces as a potential source of dietary fibre: composition and antioxidant properties. Journal of Food Science and Technology, 50(5), 1012-1017. doi:10.1007/s13197-011-0601-z | es_ES |
dc.description.references | Matias, M. de F. O., Oliveira, E. L. de, Gertrudes, E., & Magalhães, M. M. dos A. (2005). Use of fibres obtained from the cashew (Anacardium ocidentale, L) and guava (Psidium guayava) fruits for enrichment of food products. Brazilian Archives of Biology and Technology, 48(spe), 143-150. doi:10.1590/s1516-89132005000400018 | es_ES |
dc.description.references | Larrauri, J. A., Rupérez, P., Borroto, B., & Saura-Calixto, F. (1996). Mango Peels as a New Tropical Fibre: Preparation and Characterization. LWT - Food Science and Technology, 29(8), 729-733. doi:10.1006/fstl.1996.0113 | es_ES |
dc.description.references | Martin-Cabrejas, M. A., Esteban, R. M., Lopez-Andreu, F. J., Waldron, K., & Selvendran, R. R. (1995). Dietary Fiber Content of Pear and Kiwi Pomaces. Journal of Agricultural and Food Chemistry, 43(3), 662-666. doi:10.1021/jf00051a020 | es_ES |
dc.description.references | Struck, S., Plaza, M., Turner, C., & Rohm, H. (2016). Berry pomace - a review of processing and chemical analysis of its polyphenols. International Journal of Food Science & Technology, 51(6), 1305-1318. doi:10.1111/ijfs.13112 | es_ES |
dc.description.references | Campbell, G.; Ross, M.; Motoi, L. Expansion capacity of bran-enriched doughs in different scales of laboratory mixers. InBubbles in food 2; Campbell, G.M., Scanlon, M.G., Pyle, D.L., Eds.; Eagan Press: St. Paul, MN, 2008; pp 323–336. | es_ES |
dc.description.references | Cauvain, S.; Chamberlain, N.; Collins, T.; Davies, J. The distribution of dietary fibre and baking quality among mill fractions of CBP flour. FMBRA Report No, 1983, 5. | es_ES |
dc.description.references | Galliard, T., & Collins, A. D. (1988). Effects of oxidising improvers, an emulsifier, fat and mixer atmosphere on the performance of wholemeal flour in the chorleywood bread process. Journal of Cereal Science, 8(2), 139-146. doi:10.1016/s0733-5210(88)80024-9 | es_ES |
dc.description.references | Galliard, T., & Gallagher, D. M. (1988). The effects of wheat bran particle size and storage period on bran flavour and baking quality of bran/flour blends. Journal of Cereal Science, 8(2), 147-154. doi:10.1016/s0733-5210(88)80025-0 | es_ES |
dc.description.references | Gan, Z., Ellis, P. R., Vaughan, J. G., & Galliard, T. (1989). Some effects of non-endosperm components of wheat and of added gluten on wholemeal bread microstructure. Journal of Cereal Science, 10(2), 81-91. doi:10.1016/s0733-5210(89)80037-2 | es_ES |
dc.description.references | Gan, Z., Galliard, T., Ellis, P. R., Angold, R. E., & Vaughan, J. G. (1992). Effect of the outer bran layers on the loaf volume of wheat bread. Journal of Cereal Science, 15(2), 151-163. doi:10.1016/s0733-5210(09)80066-0 | es_ES |
dc.description.references | Wootton, M., & Shams-Ud-Din, M. (1986). The effects of aqueous extraction on the performance of wheat bran in bread. Journal of the Science of Food and Agriculture, 37(4), 387-390. doi:10.1002/jsfa.2740370409 | es_ES |
dc.description.references | Zhang, D., & Moore, W. R. (1997). Effect of Wheat Bran Particle Size on Dough Rheological Properties. Journal of the Science of Food and Agriculture, 74(4), 490-496. doi:10.1002/(sici)1097-0010(199708)74:4<490::aid-jsfa822>3.0.co;2-0 | es_ES |
dc.description.references | Gan, Z., Ellis, P. R., & Schofield, J. D. (1995). Gas Cell Stabilisation and Gas Retention in Wheat Bread Dough. Journal of Cereal Science, 21(3), 215-230. doi:10.1006/jcrs.1995.0025 | es_ES |
dc.description.references | Zhang, D., & Moore, W. R. (1999). Wheat bran particle size effects on bread baking performance and quality. Journal of the Science of Food and Agriculture, 79(6), 805-809. doi:10.1002/(sici)1097-0010(19990501)79:6<805::aid-jsfa285>3.0.co;2-e | es_ES |
dc.description.references | CADDEN, A.-M. (1987). Comparative Effects of Particle Size Reduction on Physical Structure and Water Binding Properties of Several Plant Fibers. Journal of Food Science, 52(6), 1595-1599. doi:10.1111/j.1365-2621.1987.tb05886.x | es_ES |
dc.description.references | CADDEN, A.-M. (1988). Moisture Sorption Characteristics of Several Food Fibers. Journal of Food Science, 53(4), 1150-1155. doi:10.1111/j.1365-2621.1988.tb13550.x | es_ES |
dc.description.references | Laurikainen, T., Härkönen, H., Autio, K., & Poutanen, K. (1998). Effects of enzymes in fibre-enriched baking. Journal of the Science of Food and Agriculture, 76(2), 239-249. doi:10.1002/(sici)1097-0010(199802)76:2<239::aid-jsfa942>3.0.co;2-l | es_ES |
dc.description.references | Campbell, G.; Ross, M.; Motoi, L. Bran in bread: Effects of particle size and level of wheat and oat bran on mixing, proving and baking. InBubbles in food 2; Campbell, G.M., Scanlon, M.G., Pyle, D.L., Eds.; Eagan Press: St. Paul, MN, 2008; pp 337–354. | es_ES |
dc.description.references | Sivam, A. S., Sun-Waterhouse, D., Quek, S., & Perera, C. O. (2010). Properties of Bread Dough with Added Fiber Polysaccharides and Phenolic Antioxidants: A Review. Journal of Food Science, 75(8), R163-R174. doi:10.1111/j.1750-3841.2010.01815.x | es_ES |
dc.description.references | Anil, M. (2007). Using of hazelnut testa as a source of dietary fiber in breadmaking. Journal of Food Engineering, 80(1), 61-67. doi:10.1016/j.jfoodeng.2006.05.003 | es_ES |
dc.description.references | Chang, R.-C., Li, C.-Y., & Shiau, S.-Y. (2016). Physico-chemical and sensory properties of bread enriched with lemon pomace fiber. Czech Journal of Food Sciences, 33(No. 2), 180-185. doi:10.17221/496/2014-cjfs | es_ES |
dc.description.references | MASOODI, F. A., & CHAUHAN, G. S. (1998). USE OF APPLE POMACE AS A SOURCE OF DIETARY FIBER IN WHEAT BREAD. Journal of Food Processing and Preservation, 22(4), 255-263. doi:10.1111/j.1745-4549.1998.tb00349.x | es_ES |
dc.description.references | O’Shea, N., Rößle, C., Arendt, E., & Gallagher, E. (2015). Modelling the effects of orange pomace using response surface design for gluten-free bread baking. Food Chemistry, 166, 223-230. doi:10.1016/j.foodchem.2014.05.157 | es_ES |
dc.description.references | Rosell, C. M., Santos, E., & Collar, C. (2005). Mixing properties of fibre-enriched wheat bread doughs: A response surface methodology study. European Food Research and Technology, 223(3), 333-340. doi:10.1007/s00217-005-0208-6 | es_ES |
dc.description.references | Walker, R., Tseng, A., Cavender, G., Ross, A., & Zhao, Y. (2014). Physicochemical, Nutritional, and Sensory Qualities of Wine Grape Pomace Fortified Baked Goods. Journal of Food Science, 79(9), S1811-S1822. doi:10.1111/1750-3841.12554 | es_ES |
dc.description.references | Başman, A., & Köksel, H. (1999). Properties and Composition of Turkish Flat Bread (Bazlama) Supplemented with Barley Flour and Wheat Bran. Cereal Chemistry Journal, 76(4), 506-511. doi:10.1094/cchem.1999.76.4.506 | es_ES |
dc.description.references | Waghmare, A. G., & Arya, S. S. (2013). Use of Fruit By-Products in the Preparation of HypoglycemicThepla: Indian Unleavened Vegetable Flat Bread. Journal of Food Processing and Preservation, 38(3), 1198-1206. doi:10.1111/jfpp.12080 | es_ES |
dc.description.references | Barnes, P. J., & Lowy, G. D. A. (1986). The effect on baking quality of interaction between milling fractions during the storage of wholemeal flour. Journal of Cereal Science, 4(3), 225-232. doi:10.1016/s0733-5210(86)80024-8 | es_ES |
dc.description.references | De Kock, S., Taylor, J., & Taylor, J. R. . (1999). Effect of Heat Treatment and Particle Size of Different Brans on Loaf Volume of Brown Bread. LWT - Food Science and Technology, 32(6), 349-356. doi:10.1006/fstl.1999.0564 | es_ES |
dc.description.references | Nelles, E. M., Randall, P. G., & Taylor, J. R. N. (1998). Improvement of Brown Bread Quality by Prehydration Treatment and Cultivar Selection of Bran. Cereal Chemistry Journal, 75(4), 536-540. doi:10.1094/cchem.1998.75.4.536 | es_ES |
dc.description.references | Doehlert, D. C., & Moore, W. R. (1997). Composition of Oat Bran and Flour Prepared by Three Different Mechanisms of Dry Milling. Cereal Chemistry Journal, 74(4), 403-406. doi:10.1094/cchem.1997.74.4.403 | es_ES |
dc.description.references | Rocha Parra, A. F., Ribotta, P. D., & Ferrero, C. (2014). Apple pomace in gluten-free formulations: effect on rheology and product quality. International Journal of Food Science & Technology, 50(3), 682-690. doi:10.1111/ijfs.12662 | es_ES |
dc.description.references | PATERAS, I. M. C., HOWELLS, K. F., & ROSENTHAL, A. J. (1994). Hot-stage Microscopy of Cake Batter Bubbles during Simulated Baking: Sucrose Replacement by Polydextrose. Journal of Food Science, 59(1), 168-170. doi:10.1111/j.1365-2621.1994.tb06925.x | es_ES |
dc.description.references | Cauvain, S. P., & Young, L. S. (Eds.). (2006). Baked Products. doi:10.1002/9780470995907 | es_ES |
dc.description.references | Foschia, M., Peressini, D., Sensidoni, A., & Brennan, C. S. (2013). The effects of dietary fibre addition on the quality of common cereal products. Journal of Cereal Science, 58(2), 216-227. doi:10.1016/j.jcs.2013.05.010 | es_ES |
dc.description.references | Grigor, J. M., Brennan, C. S., Hutchings, S. C., & Rowlands, D. S. (2015). The sensory acceptance of fibre-enriched cereal foods: a meta-analysis. International Journal of Food Science & Technology, 51(1), 3-13. doi:10.1111/ijfs.13005 | es_ES |
dc.description.references | WANG, H. J., & THOMAS, R. L. (1989). Direct Use of Apple Pomace in Bakery Products. Journal of Food Science, 54(3), 618-620. doi:10.1111/j.1365-2621.1989.tb04665.x | es_ES |
dc.description.references | Masoodi, F. A., Sharma, B., & Chauhan, G. S. (2002). Plant Foods for Human Nutrition, 57(2), 121-128. doi:10.1023/a:1015264032164 | es_ES |
dc.description.references | Sudha, M. L., Indumathi, K., Sumanth, M. S., Rajarathnam, S., & Shashirekha, M. N. (2015). Mango pulp fibre waste: characterization and utilization as a bakery product ingredient. Journal of Food Measurement and Characterization, 9(3), 382-388. doi:10.1007/s11694-015-9246-3 | es_ES |
dc.description.references | Romero-Lopez, M. R., Osorio-Diaz, P., Bello-Perez, L. A., Tovar, J., & Bernardino-Nicanor, A. (2011). Fiber Concentrate from Orange (Citrus sinensis L.) Bagase: Characterization and Application as Bakery Product Ingredient. International Journal of Molecular Sciences, 12(4), 2174-2186. doi:10.3390/ijms12042174 | es_ES |
dc.description.references | Mildner-Szkudlarz, S., Siger, A., Szwengiel, A., & Bajerska, J. (2015). Natural compounds from grape by-products enhance nutritive value and reduce formation of CML in model muffins. Food Chemistry, 172, 78-85. doi:10.1016/j.foodchem.2014.09.036 | es_ES |
dc.description.references | Rodríguez-García, J., Sahi, S. S., & Hernando, I. (2014). Functionality of lipase and emulsifiers in low-fat cakes with inulin. LWT - Food Science and Technology, 58(1), 173-182. doi:10.1016/j.lwt.2014.02.012 | es_ES |
dc.description.references | Rodríguez-García, J., Salvador, A., & Hernando, I. (2013). Replacing Fat and Sugar with Inulin in Cakes: Bubble Size Distribution, Physical and Sensory Properties. Food and Bioprocess Technology, 7(4), 964-974. doi:10.1007/s11947-013-1066-z | es_ES |
dc.description.references | Khalil, A. H. (1998). Plant Foods for Human Nutrition, 52(4), 299-313. doi:10.1023/a:1008096031498 | es_ES |
dc.description.references | Matsakidou, A., Blekas, G., & Paraskevopoulou, A. (2010). Aroma and physical characteristics of cakes prepared by replacing margarine with extra virgin olive oil. LWT - Food Science and Technology, 43(6), 949-957. doi:10.1016/j.lwt.2010.02.002 | es_ES |
dc.description.references | Sikorski, Z.E.; Sikorska-Wiśniewska, G. The role of lipids in food quality. InImproving the fat content of foods. Williams, C., Buttriss, J., Eds.; Woodhead Publishing: Cambridge, UK, 2006; pp 213–235. | es_ES |
dc.description.references | Zahn, S., Pepke, F., & Rohm, H. (2010). Effect of inulin as a fat replacer on texture and sensory properties of muffins. International Journal of Food Science & Technology, 45(12), 2531-2537. doi:10.1111/j.1365-2621.2010.02444.x | es_ES |
dc.description.references | Grigelmo-Miguel, N., Carreras-Boladeras, E., & Martín-Belloso, O. (2001). Influence of the Addition of Peach Dietary Fiber in Composition, Physical Properties and Acceptability of Reduced-Fat Muffins. Food Science and Technology International, 7(5), 425-431. doi:10.1177/108201301772660484 | es_ES |
dc.description.references | Al-Sayed, H. M. A., & Ahmed, A. R. (2013). Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Annals of Agricultural Sciences, 58(1), 83-95. doi:10.1016/j.aoas.2013.01.012 | es_ES |
dc.description.references | Kocer, D., Hicsasmaz, Z., Bayindirli, A., & Katnas, S. (2007). Bubble and pore formation of the high-ratio cake formulation with polydextrose as a sugar- and fat-replacer. Journal of Food Engineering, 78(3), 953-964. doi:10.1016/j.jfoodeng.2005.11.034 | es_ES |
dc.description.references | Hicsasmaz, Z., Yazgan, Y., Bozoglu, F., & Katnas, Z. (2003). Effect of polydextrose-substitution on the cell structure of the high-ratio cake system. LWT - Food Science and Technology, 36(4), 441-450. doi:10.1016/s0023-6438(03)00038-0 | es_ES |
dc.description.references | Struck, S., Jaros, D., Brennan, C. S., & Rohm, H. (2014). Sugar replacement in sweetened bakery goods. International Journal of Food Science & Technology, 49(9), 1963-1976. doi:10.1111/ijfs.12617 | es_ES |
dc.description.references | Zahn, S., Forker, A., Krügel, L., & Rohm, H. (2013). Combined use of rebaudioside A and fibres for partial sucrose replacement in muffins. LWT - Food Science and Technology, 50(2), 695-701. doi:10.1016/j.lwt.2012.07.026 | es_ES |
dc.description.references | Ajila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319-326. doi:10.1016/j.jcs.2007.10.001 | es_ES |
dc.description.references | Kohajdová, Z., Karovičová, J., Magala, M., & Kuchtová, V. (2014). Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chemical Papers, 68(8). doi:10.2478/s11696-014-0567-1 | es_ES |
dc.description.references | Rosell, C. ., Rojas, J. ., & Benedito de Barber, C. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15(1), 75-81. doi:10.1016/s0268-005x(00)00054-0 | es_ES |
dc.description.references | Mildner-Szkudlarz, S., Bajerska, J., Zawirska-Wojtasiak, R., & Górecka, D. (2012). White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits. Journal of the Science of Food and Agriculture, 93(2), 389-395. doi:10.1002/jsfa.5774 | es_ES |
dc.description.references | Srivastava, P., Indrani, D., & Singh, R. P. (2014). Effect of dried pomegranate (Punica granatum) peel powder (DPPP) on textural, organoleptic and nutritional characteristics of biscuits. International Journal of Food Sciences and Nutrition, 65(7), 827-833. doi:10.3109/09637486.2014.937797 | es_ES |
dc.description.references | Min, B., Bae, I. Y., Lee, H. G., Yoo, S.-H., & Lee, S. (2010). Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system. Bioresource Technology, 101(14), 5414-5418. doi:10.1016/j.biortech.2010.02.022 | es_ES |
dc.description.references | Larrea, M. ., Chang, Y. ., & Martı́nez Bustos, F. (2005). Effect of some operational extrusion parameters on the constituents of orange pulp. Food Chemistry, 89(2), 301-308. doi:10.1016/j.foodchem.2004.02.037 | es_ES |
dc.description.references | Jung, J., Cavender, G., & Zhao, Y. (2014). Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products. Journal of Food Science and Technology, 52(9), 5568-5578. doi:10.1007/s13197-014-1680-4 | es_ES |
dc.description.references | Pasqualone, A., Bianco, A. M., Paradiso, V. M., Summo, C., Gambacorta, G., & Caponio, F. (2014). Physico-chemical, sensory and volatile profiles of biscuits enriched with grape marc extract. Food Research International, 65, 385-393. doi:10.1016/j.foodres.2014.07.014 | es_ES |
dc.description.references | CARSON, K. J., COLLINS, J. L., & PENFIELD, M. P. (1994). Unrefined, Dried Apple Pomace as a Potential Food Ingredient. Journal of Food Science, 59(6), 1213-1215. doi:10.1111/j.1365-2621.1994.tb14679.x | es_ES |
dc.description.references | Uysal, H., Bilgiçli, N., Elgün, A., İbanoğlu, Ş., Herken, E. N., & Kürşat Demir, M. (2007). Effect of dietary fibre and xylanase enzyme addition on the selected properties of wire-cut cookies. Journal of Food Engineering, 78(3), 1074-1078. doi:10.1016/j.jfoodeng.2005.12.019 | es_ES |
dc.description.references | Özboy-Özbaş, Ö., Seker, I. T., & Gökbulut, I. (2010). Effects of resistant starch, apricot kernel flour, and fiber-rich fruit powders on low-fat cookie quality. Food Science and Biotechnology, 19(4), 979-986. doi:10.1007/s10068-010-0137-4 | es_ES |
dc.description.references | Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products. International Journal of Food Science & Technology, 44(6), 1263-1271. doi:10.1111/j.1365-2621.2009.01956.x | es_ES |
dc.description.references | Karkle, E. L., Keller, L., Dogan, H., & Alavi, S. (2012). Matrix transformation in fiber-added extruded products: Impact of different hydration regimens on texture, microstructure and digestibility. Journal of Food Engineering, 108(1), 171-182. doi:10.1016/j.jfoodeng.2011.06.020 | es_ES |
dc.description.references | Mäkilä, L., Laaksonen, O., Ramos Diaz, J. M., Vahvaselkä, M., Myllymäki, O., Lehtomäki, I., … Kallio, H. (2014). Exploiting blackcurrant juice press residue in extruded snacks. LWT - Food Science and Technology, 57(2), 618-627. doi:10.1016/j.lwt.2014.02.005 | es_ES |
dc.description.references | Yağcı, S., & Göğüş, F. (2008). Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from food-by-products. Journal of Food Engineering, 86(1), 122-132. doi:10.1016/j.jfoodeng.2007.09.018 | es_ES |
dc.description.references | Paraman, I., Sharif, M. K., Supriyadi, S., & Rizvi, S. S. H. (2015). Agro-food industry byproducts into value-added extruded foods. Food and Bioproducts Processing, 96, 78-85. doi:10.1016/j.fbp.2015.07.003 | es_ES |
dc.description.references | Karkle, E. L., Alavi, S., & Dogan, H. (2012). Cellular architecture and its relationship with mechanical properties in expanded extrudates containing apple pomace. Food Research International, 46(1), 10-21. doi:10.1016/j.foodres.2011.11.003 | es_ES |
dc.description.references | Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of Extrusion Cooking on Functional Properties andin vitroStarch Digestibility of Barley-Based Extrudates from Fruit and Vegetable By-Products. Journal of Food Science, 74(2), E77-E86. doi:10.1111/j.1750-3841.2009.01051.x | es_ES |
dc.description.references | Altan, A., McCarthy, K. L., & Maskan, M. (2008). Twin-screw extrusion of barley–grape pomace blends: Extrudate characteristics and determination of optimum processing conditions. Journal of Food Engineering, 89(1), 24-32. doi:10.1016/j.jfoodeng.2008.03.025 | es_ES |
dc.description.references | Drożdż, W., Tomaszewska-Ciosk, E., Zdybel, E., Boruczkowska, H., Boruczkowski, T., & Regiec, P. (2014). Effect of Apple and Rosehip Pomaces on Colour, Total Phenolics and Antioxidant Activity of Corn Extruded Snacks. Polish Journal of Chemical Technology, 16(3), 7-11. doi:10.2478/pjct-2014-0042 | es_ES |
dc.description.references | GUMUL, D., ZIOBRO, R., ZIĘBA, T., & RÓJ, E. (2011). THE INFLUENCE OF ADDITION OF DEFATTED BLACKCURRANT SEEDS ON PRO-HEALTH CONSTITUENTS AND TEXTURE OF CEREAL EXTRUDATES. Journal of Food Quality, 34(6), 395-402. doi:10.1111/j.1745-4557.2011.00418.x | es_ES |
dc.description.references | Khanal, R. C., Howard, L. R., Brownmiller, C. R., & Prior, R. L. (2009). Influence of Extrusion Processing on Procyanidin Composition and Total Anthocyanin Contents of Blueberry Pomace. Journal of Food Science, 74(2), H52-H58. doi:10.1111/j.1750-3841.2009.01063.x | es_ES |
dc.description.references | Khanal, R. C., Howard, L. R., & Prior, R. L. (2009). Procyanidin Content of Grape Seed and Pomace, and Total Anthocyanin Content of Grape Pomace as Affected by Extrusion Processing. Journal of Food Science, 74(6), H174-H182. doi:10.1111/j.1750-3841.2009.01221.x | es_ES |
dc.description.references | Hirth, M., Leiter, A., Beck, S. M., & Schuchmann, H. P. (2014). Effect of extrusion cooking process parameters on the retention of bilberry anthocyanins in starch based food. Journal of Food Engineering, 125, 139-146. doi:10.1016/j.jfoodeng.2013.10.034 | es_ES |
dc.description.references | White, B. L., Howard, L. R., & Prior, R. L. (2010). Polyphenolic Composition and Antioxidant Capacity of Extruded Cranberry Pomace†. Journal of Agricultural and Food Chemistry, 58(7), 4037-4042. doi:10.1021/jf902838b | es_ES |