- -

Fiber from fruit pomace: A review of applications in cereals-based products

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fiber from fruit pomace: A review of applications in cereals-based products

Mostrar el registro completo del ítem

Quiles Chuliá, MD.; Campbell, G.; Struck, S.; Rohm, H.; Hernando Hernando, MI. (2016). Fiber from fruit pomace: A review of applications in cereals-based products. Food Reviews International. 34(2):162-181. https://doi.org/10.1080/87559129.2016.1261299

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141967

Ficheros en el ítem

Metadatos del ítem

Título: Fiber from fruit pomace: A review of applications in cereals-based products
Autor: Quiles Chuliá, Mª Desamparados Campbell, G.M. Struck, S. Rohm, H. Hernando Hernando, Mª Isabel
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] Fruit pomace is a by-product of the fruit processing industry composed of cell wall compounds, stems, and seeds of the fruit; after washing, drying, and milling, a material high in fiber and bioactive compounds is ...[+]
Palabras clave: Aerated structure , Bread , Consumer acceptability , Healthy bakery products
Derechos de uso: Reserva de todos los derechos
Fuente:
Food Reviews International. (issn: 8755-9129 )
DOI: 10.1080/87559129.2016.1261299
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/87559129.2016.1261299
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/291766/EU/Sustainable Food/
info:eu-repo/grantAgreement/BMBF//031B0004/
Agradecimientos:
The funding, assured through the national partner organizations, is gratefully acknowledged: INIA in Spain, DEFRA in UK, and Federal Ministry of Education and Research via PTJ in Germany (grant 031B0004).
Tipo: Artículo

References

Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395-401. doi:10.1016/j.foodchem.2004.04.036

Rohm, H., Brennan, C., Turner, C., Günther, E., Campbell, G., Hernando, I., … Kontogiorgos, V. (2015). Adding Value to Fruit Processing Waste: Innovative Ways to Incorporate Fibers from Berry Pomace in Baked and Extruded Cereal-based Foods—A SUSFOOD Project. Foods, 4(4), 690-697. doi:10.3390/foods4040690

Saura-Calixto, F. (1998). Antioxidant Dietary Fiber Product:  A New Concept and a Potential Food Ingredient. Journal of Agricultural and Food Chemistry, 46(10), 4303-4306. doi:10.1021/jf9803841 [+]
Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395-401. doi:10.1016/j.foodchem.2004.04.036

Rohm, H., Brennan, C., Turner, C., Günther, E., Campbell, G., Hernando, I., … Kontogiorgos, V. (2015). Adding Value to Fruit Processing Waste: Innovative Ways to Incorporate Fibers from Berry Pomace in Baked and Extruded Cereal-based Foods—A SUSFOOD Project. Foods, 4(4), 690-697. doi:10.3390/foods4040690

Saura-Calixto, F. (1998). Antioxidant Dietary Fiber Product:  A New Concept and a Potential Food Ingredient. Journal of Agricultural and Food Chemistry, 46(10), 4303-4306. doi:10.1021/jf9803841

Viebke, C., Al-Assaf, S., & Phillips, G. O. (2014). Food hydrocolloids and health claims. Bioactive Carbohydrates and Dietary Fibre, 4(2), 101-114. doi:10.1016/j.bcdf.2014.06.006

Lattimer, J. M., & Haub, M. D. (2010). Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients, 2(12), 1266-1289. doi:10.3390/nu2121266

Slavin, J. (2013). Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients, 5(4), 1417-1435. doi:10.3390/nu5041417

Struck, S., Gundel, L., Zahn, S., & Rohm, H. (2016). Fiber enriched reduced sugar muffins made from iso-viscous batters. LWT - Food Science and Technology, 65, 32-38. doi:10.1016/j.lwt.2015.07.053

Grigelmo-Miguel, N., & Martı́n-Belloso, O. (1999). Comparison of Dietary Fibre from By-products of Processing Fruits and Greens and from Cereals. LWT - Food Science and Technology, 32(8), 503-508. doi:10.1006/fstl.1999.0587

Wang, L., Xu, H., Yuan, F., Pan, Q., Fan, R., & Gao, Y. (2015). Physicochemical characterization of five types of citrus dietary fibers. Biocatalysis and Agricultural Biotechnology, 4(2), 250-258. doi:10.1016/j.bcab.2015.02.003

Martí, N., Saura, D., Fuentes’, E., Lizama, V., García, E., Mico-Ballester, M. J., & Lorente, J. (2011). Fiber from tangerine juice industry. Industrial Crops and Products, 33(1), 94-98. doi:10.1016/j.indcrop.2010.09.004

Iora, S. R. F., Maciel, G. M., Zielinski, A. A. F., da Silva, M. V., Pontes, P. V. de A., Haminiuk, C. W. I., & Granato, D. (2014). Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. International Journal of Food Science & Technology, 50(1), 62-69. doi:10.1111/ijfs.12583

Yu, J., & Ahmedna, M. (2012). Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science & Technology, 48(2), 221-237. doi:10.1111/j.1365-2621.2012.03197.x

Milala, J., Kosmala, M., Sójka, M., Kołodziejczyk, K., Zbrzeźniak, M., & Markowski, J. (2011). Plum pomaces as a potential source of dietary fibre: composition and antioxidant properties. Journal of Food Science and Technology, 50(5), 1012-1017. doi:10.1007/s13197-011-0601-z

Matias, M. de F. O., Oliveira, E. L. de, Gertrudes, E., & Magalhães, M. M. dos A. (2005). Use of fibres obtained from the cashew (Anacardium ocidentale, L) and guava (Psidium guayava) fruits for enrichment of food products. Brazilian Archives of Biology and Technology, 48(spe), 143-150. doi:10.1590/s1516-89132005000400018

Larrauri, J. A., Rupérez, P., Borroto, B., & Saura-Calixto, F. (1996). Mango Peels as a New Tropical Fibre: Preparation and Characterization. LWT - Food Science and Technology, 29(8), 729-733. doi:10.1006/fstl.1996.0113

Martin-Cabrejas, M. A., Esteban, R. M., Lopez-Andreu, F. J., Waldron, K., & Selvendran, R. R. (1995). Dietary Fiber Content of Pear and Kiwi Pomaces. Journal of Agricultural and Food Chemistry, 43(3), 662-666. doi:10.1021/jf00051a020

Struck, S., Plaza, M., Turner, C., & Rohm, H. (2016). Berry pomace - a review of processing and chemical analysis of its polyphenols. International Journal of Food Science & Technology, 51(6), 1305-1318. doi:10.1111/ijfs.13112

Campbell, G.; Ross, M.; Motoi, L. Expansion capacity of bran-enriched doughs in different scales of laboratory mixers. InBubbles in food 2; Campbell, G.M., Scanlon, M.G., Pyle, D.L., Eds.; Eagan Press: St. Paul, MN, 2008; pp 323–336.

Cauvain, S.; Chamberlain, N.; Collins, T.; Davies, J. The distribution of dietary fibre and baking quality among mill fractions of CBP flour. FMBRA Report No, 1983, 5.

Galliard, T., & Collins, A. D. (1988). Effects of oxidising improvers, an emulsifier, fat and mixer atmosphere on the performance of wholemeal flour in the chorleywood bread process. Journal of Cereal Science, 8(2), 139-146. doi:10.1016/s0733-5210(88)80024-9

Galliard, T., & Gallagher, D. M. (1988). The effects of wheat bran particle size and storage period on bran flavour and baking quality of bran/flour blends. Journal of Cereal Science, 8(2), 147-154. doi:10.1016/s0733-5210(88)80025-0

Gan, Z., Ellis, P. R., Vaughan, J. G., & Galliard, T. (1989). Some effects of non-endosperm components of wheat and of added gluten on wholemeal bread microstructure. Journal of Cereal Science, 10(2), 81-91. doi:10.1016/s0733-5210(89)80037-2

Gan, Z., Galliard, T., Ellis, P. R., Angold, R. E., & Vaughan, J. G. (1992). Effect of the outer bran layers on the loaf volume of wheat bread. Journal of Cereal Science, 15(2), 151-163. doi:10.1016/s0733-5210(09)80066-0

Wootton, M., & Shams-Ud-Din, M. (1986). The effects of aqueous extraction on the performance of wheat bran in bread. Journal of the Science of Food and Agriculture, 37(4), 387-390. doi:10.1002/jsfa.2740370409

Zhang, D., & Moore, W. R. (1997). Effect of Wheat Bran Particle Size on Dough Rheological Properties. Journal of the Science of Food and Agriculture, 74(4), 490-496. doi:10.1002/(sici)1097-0010(199708)74:4<490::aid-jsfa822>3.0.co;2-0

Gan, Z., Ellis, P. R., & Schofield, J. D. (1995). Gas Cell Stabilisation and Gas Retention in Wheat Bread Dough. Journal of Cereal Science, 21(3), 215-230. doi:10.1006/jcrs.1995.0025

Zhang, D., & Moore, W. R. (1999). Wheat bran particle size effects on bread baking performance and quality. Journal of the Science of Food and Agriculture, 79(6), 805-809. doi:10.1002/(sici)1097-0010(19990501)79:6<805::aid-jsfa285>3.0.co;2-e

CADDEN, A.-M. (1987). Comparative Effects of Particle Size Reduction on Physical Structure and Water Binding Properties of Several Plant Fibers. Journal of Food Science, 52(6), 1595-1599. doi:10.1111/j.1365-2621.1987.tb05886.x

CADDEN, A.-M. (1988). Moisture Sorption Characteristics of Several Food Fibers. Journal of Food Science, 53(4), 1150-1155. doi:10.1111/j.1365-2621.1988.tb13550.x

Laurikainen, T., Härkönen, H., Autio, K., & Poutanen, K. (1998). Effects of enzymes in fibre-enriched baking. Journal of the Science of Food and Agriculture, 76(2), 239-249. doi:10.1002/(sici)1097-0010(199802)76:2<239::aid-jsfa942>3.0.co;2-l

Campbell, G.; Ross, M.; Motoi, L. Bran in bread: Effects of particle size and level of wheat and oat bran on mixing, proving and baking. InBubbles in food 2; Campbell, G.M., Scanlon, M.G., Pyle, D.L., Eds.; Eagan Press: St. Paul, MN, 2008; pp 337–354.

Sivam, A. S., Sun-Waterhouse, D., Quek, S., & Perera, C. O. (2010). Properties of Bread Dough with Added Fiber Polysaccharides and Phenolic Antioxidants: A Review. Journal of Food Science, 75(8), R163-R174. doi:10.1111/j.1750-3841.2010.01815.x

Anil, M. (2007). Using of hazelnut testa as a source of dietary fiber in breadmaking. Journal of Food Engineering, 80(1), 61-67. doi:10.1016/j.jfoodeng.2006.05.003

Chang, R.-C., Li, C.-Y., & Shiau, S.-Y. (2016). Physico-chemical and sensory properties of bread enriched with lemon pomace fiber. Czech Journal of Food Sciences, 33(No. 2), 180-185. doi:10.17221/496/2014-cjfs

MASOODI, F. A., & CHAUHAN, G. S. (1998). USE OF APPLE POMACE AS A SOURCE OF DIETARY FIBER IN WHEAT BREAD. Journal of Food Processing and Preservation, 22(4), 255-263. doi:10.1111/j.1745-4549.1998.tb00349.x

O’Shea, N., Rößle, C., Arendt, E., & Gallagher, E. (2015). Modelling the effects of orange pomace using response surface design for gluten-free bread baking. Food Chemistry, 166, 223-230. doi:10.1016/j.foodchem.2014.05.157

Rosell, C. M., Santos, E., & Collar, C. (2005). Mixing properties of fibre-enriched wheat bread doughs: A response surface methodology study. European Food Research and Technology, 223(3), 333-340. doi:10.1007/s00217-005-0208-6

Walker, R., Tseng, A., Cavender, G., Ross, A., & Zhao, Y. (2014). Physicochemical, Nutritional, and Sensory Qualities of Wine Grape Pomace Fortified Baked Goods. Journal of Food Science, 79(9), S1811-S1822. doi:10.1111/1750-3841.12554

Başman, A., & Köksel, H. (1999). Properties and Composition of Turkish Flat Bread (Bazlama) Supplemented with Barley Flour and Wheat Bran. Cereal Chemistry Journal, 76(4), 506-511. doi:10.1094/cchem.1999.76.4.506

Waghmare, A. G., & Arya, S. S. (2013). Use of Fruit By-Products in the Preparation of HypoglycemicThepla: Indian Unleavened Vegetable Flat Bread. Journal of Food Processing and Preservation, 38(3), 1198-1206. doi:10.1111/jfpp.12080

Barnes, P. J., & Lowy, G. D. A. (1986). The effect on baking quality of interaction between milling fractions during the storage of wholemeal flour. Journal of Cereal Science, 4(3), 225-232. doi:10.1016/s0733-5210(86)80024-8

De Kock, S., Taylor, J., & Taylor, J. R. . (1999). Effect of Heat Treatment and Particle Size of Different Brans on Loaf Volume of Brown Bread. LWT - Food Science and Technology, 32(6), 349-356. doi:10.1006/fstl.1999.0564

Nelles, E. M., Randall, P. G., & Taylor, J. R. N. (1998). Improvement of Brown Bread Quality by Prehydration Treatment and Cultivar Selection of Bran. Cereal Chemistry Journal, 75(4), 536-540. doi:10.1094/cchem.1998.75.4.536

Doehlert, D. C., & Moore, W. R. (1997). Composition of Oat Bran and Flour Prepared by Three Different Mechanisms of Dry Milling. Cereal Chemistry Journal, 74(4), 403-406. doi:10.1094/cchem.1997.74.4.403

Rocha Parra, A. F., Ribotta, P. D., & Ferrero, C. (2014). Apple pomace in gluten-free formulations: effect on rheology and product quality. International Journal of Food Science & Technology, 50(3), 682-690. doi:10.1111/ijfs.12662

PATERAS, I. M. C., HOWELLS, K. F., & ROSENTHAL, A. J. (1994). Hot-stage Microscopy of Cake Batter Bubbles during Simulated Baking: Sucrose Replacement by Polydextrose. Journal of Food Science, 59(1), 168-170. doi:10.1111/j.1365-2621.1994.tb06925.x

Cauvain, S. P., & Young, L. S. (Eds.). (2006). Baked Products. doi:10.1002/9780470995907

Foschia, M., Peressini, D., Sensidoni, A., & Brennan, C. S. (2013). The effects of dietary fibre addition on the quality of common cereal products. Journal of Cereal Science, 58(2), 216-227. doi:10.1016/j.jcs.2013.05.010

Grigor, J. M., Brennan, C. S., Hutchings, S. C., & Rowlands, D. S. (2015). The sensory acceptance of fibre-enriched cereal foods: a meta-analysis. International Journal of Food Science & Technology, 51(1), 3-13. doi:10.1111/ijfs.13005

WANG, H. J., & THOMAS, R. L. (1989). Direct Use of Apple Pomace in Bakery Products. Journal of Food Science, 54(3), 618-620. doi:10.1111/j.1365-2621.1989.tb04665.x

Masoodi, F. A., Sharma, B., & Chauhan, G. S. (2002). Plant Foods for Human Nutrition, 57(2), 121-128. doi:10.1023/a:1015264032164

Sudha, M. L., Indumathi, K., Sumanth, M. S., Rajarathnam, S., & Shashirekha, M. N. (2015). Mango pulp fibre waste: characterization and utilization as a bakery product ingredient. Journal of Food Measurement and Characterization, 9(3), 382-388. doi:10.1007/s11694-015-9246-3

Romero-Lopez, M. R., Osorio-Diaz, P., Bello-Perez, L. A., Tovar, J., & Bernardino-Nicanor, A. (2011). Fiber Concentrate from Orange (Citrus sinensis L.) Bagase: Characterization and Application as Bakery Product Ingredient. International Journal of Molecular Sciences, 12(4), 2174-2186. doi:10.3390/ijms12042174

Mildner-Szkudlarz, S., Siger, A., Szwengiel, A., & Bajerska, J. (2015). Natural compounds from grape by-products enhance nutritive value and reduce formation of CML in model muffins. Food Chemistry, 172, 78-85. doi:10.1016/j.foodchem.2014.09.036

Rodríguez-García, J., Sahi, S. S., & Hernando, I. (2014). Functionality of lipase and emulsifiers in low-fat cakes with inulin. LWT - Food Science and Technology, 58(1), 173-182. doi:10.1016/j.lwt.2014.02.012

Rodríguez-García, J., Salvador, A., & Hernando, I. (2013). Replacing Fat and Sugar with Inulin in Cakes: Bubble Size Distribution, Physical and Sensory Properties. Food and Bioprocess Technology, 7(4), 964-974. doi:10.1007/s11947-013-1066-z

Khalil, A. H. (1998). Plant Foods for Human Nutrition, 52(4), 299-313. doi:10.1023/a:1008096031498

Matsakidou, A., Blekas, G., & Paraskevopoulou, A. (2010). Aroma and physical characteristics of cakes prepared by replacing margarine with extra virgin olive oil. LWT - Food Science and Technology, 43(6), 949-957. doi:10.1016/j.lwt.2010.02.002

Sikorski, Z.E.; Sikorska-Wiśniewska, G. The role of lipids in food quality. InImproving the fat content of foods. Williams, C., Buttriss, J., Eds.; Woodhead Publishing: Cambridge, UK, 2006; pp 213–235.

Zahn, S., Pepke, F., & Rohm, H. (2010). Effect of inulin as a fat replacer on texture and sensory properties of muffins. International Journal of Food Science & Technology, 45(12), 2531-2537. doi:10.1111/j.1365-2621.2010.02444.x

Grigelmo-Miguel, N., Carreras-Boladeras, E., & Martín-Belloso, O. (2001). Influence of the Addition of Peach Dietary Fiber in Composition, Physical Properties and Acceptability of Reduced-Fat Muffins. Food Science and Technology International, 7(5), 425-431. doi:10.1177/108201301772660484

Al-Sayed, H. M. A., & Ahmed, A. R. (2013). Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Annals of Agricultural Sciences, 58(1), 83-95. doi:10.1016/j.aoas.2013.01.012

Kocer, D., Hicsasmaz, Z., Bayindirli, A., & Katnas, S. (2007). Bubble and pore formation of the high-ratio cake formulation with polydextrose as a sugar- and fat-replacer. Journal of Food Engineering, 78(3), 953-964. doi:10.1016/j.jfoodeng.2005.11.034

Hicsasmaz, Z., Yazgan, Y., Bozoglu, F., & Katnas, Z. (2003). Effect of polydextrose-substitution on the cell structure of the high-ratio cake system. LWT - Food Science and Technology, 36(4), 441-450. doi:10.1016/s0023-6438(03)00038-0

Struck, S., Jaros, D., Brennan, C. S., & Rohm, H. (2014). Sugar replacement in sweetened bakery goods. International Journal of Food Science & Technology, 49(9), 1963-1976. doi:10.1111/ijfs.12617

Zahn, S., Forker, A., Krügel, L., & Rohm, H. (2013). Combined use of rebaudioside A and fibres for partial sucrose replacement in muffins. LWT - Food Science and Technology, 50(2), 695-701. doi:10.1016/j.lwt.2012.07.026

Ajila, C. M., Leelavathi, K., & Prasada Rao, U. J. S. (2008). Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, 48(2), 319-326. doi:10.1016/j.jcs.2007.10.001

Kohajdová, Z., Karovičová, J., Magala, M., & Kuchtová, V. (2014). Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chemical Papers, 68(8). doi:10.2478/s11696-014-0567-1

Rosell, C. ., Rojas, J. ., & Benedito de Barber, C. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15(1), 75-81. doi:10.1016/s0268-005x(00)00054-0

Mildner-Szkudlarz, S., Bajerska, J., Zawirska-Wojtasiak, R., & Górecka, D. (2012). White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits. Journal of the Science of Food and Agriculture, 93(2), 389-395. doi:10.1002/jsfa.5774

Srivastava, P., Indrani, D., & Singh, R. P. (2014). Effect of dried pomegranate (Punica granatum) peel powder (DPPP) on textural, organoleptic and nutritional characteristics of biscuits. International Journal of Food Sciences and Nutrition, 65(7), 827-833. doi:10.3109/09637486.2014.937797

Min, B., Bae, I. Y., Lee, H. G., Yoo, S.-H., & Lee, S. (2010). Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system. Bioresource Technology, 101(14), 5414-5418. doi:10.1016/j.biortech.2010.02.022

Larrea, M. ., Chang, Y. ., & Martı́nez Bustos, F. (2005). Effect of some operational extrusion parameters on the constituents of orange pulp. Food Chemistry, 89(2), 301-308. doi:10.1016/j.foodchem.2004.02.037

Jung, J., Cavender, G., & Zhao, Y. (2014). Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products. Journal of Food Science and Technology, 52(9), 5568-5578. doi:10.1007/s13197-014-1680-4

Pasqualone, A., Bianco, A. M., Paradiso, V. M., Summo, C., Gambacorta, G., & Caponio, F. (2014). Physico-chemical, sensory and volatile profiles of biscuits enriched with grape marc extract. Food Research International, 65, 385-393. doi:10.1016/j.foodres.2014.07.014

CARSON, K. J., COLLINS, J. L., & PENFIELD, M. P. (1994). Unrefined, Dried Apple Pomace as a Potential Food Ingredient. Journal of Food Science, 59(6), 1213-1215. doi:10.1111/j.1365-2621.1994.tb14679.x

Uysal, H., Bilgiçli, N., Elgün, A., İbanoğlu, Ş., Herken, E. N., & Kürşat Demir, M. (2007). Effect of dietary fibre and xylanase enzyme addition on the selected properties of wire-cut cookies. Journal of Food Engineering, 78(3), 1074-1078. doi:10.1016/j.jfoodeng.2005.12.019

Özboy-Özbaş, Ö., Seker, I. T., & Gökbulut, I. (2010). Effects of resistant starch, apricot kernel flour, and fiber-rich fruit powders on low-fat cookie quality. Food Science and Biotechnology, 19(4), 979-986. doi:10.1007/s10068-010-0137-4

Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products. International Journal of Food Science & Technology, 44(6), 1263-1271. doi:10.1111/j.1365-2621.2009.01956.x

Karkle, E. L., Keller, L., Dogan, H., & Alavi, S. (2012). Matrix transformation in fiber-added extruded products: Impact of different hydration regimens on texture, microstructure and digestibility. Journal of Food Engineering, 108(1), 171-182. doi:10.1016/j.jfoodeng.2011.06.020

Mäkilä, L., Laaksonen, O., Ramos Diaz, J. M., Vahvaselkä, M., Myllymäki, O., Lehtomäki, I., … Kallio, H. (2014). Exploiting blackcurrant juice press residue in extruded snacks. LWT - Food Science and Technology, 57(2), 618-627. doi:10.1016/j.lwt.2014.02.005

Yağcı, S., & Göğüş, F. (2008). Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from food-by-products. Journal of Food Engineering, 86(1), 122-132. doi:10.1016/j.jfoodeng.2007.09.018

Paraman, I., Sharif, M. K., Supriyadi, S., & Rizvi, S. S. H. (2015). Agro-food industry byproducts into value-added extruded foods. Food and Bioproducts Processing, 96, 78-85. doi:10.1016/j.fbp.2015.07.003

Karkle, E. L., Alavi, S., & Dogan, H. (2012). Cellular architecture and its relationship with mechanical properties in expanded extrudates containing apple pomace. Food Research International, 46(1), 10-21. doi:10.1016/j.foodres.2011.11.003

Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of Extrusion Cooking on Functional Properties andin vitroStarch Digestibility of Barley-Based Extrudates from Fruit and Vegetable By-Products. Journal of Food Science, 74(2), E77-E86. doi:10.1111/j.1750-3841.2009.01051.x

Altan, A., McCarthy, K. L., & Maskan, M. (2008). Twin-screw extrusion of barley–grape pomace blends: Extrudate characteristics and determination of optimum processing conditions. Journal of Food Engineering, 89(1), 24-32. doi:10.1016/j.jfoodeng.2008.03.025

Drożdż, W., Tomaszewska-Ciosk, E., Zdybel, E., Boruczkowska, H., Boruczkowski, T., & Regiec, P. (2014). Effect of Apple and Rosehip Pomaces on Colour, Total Phenolics and Antioxidant Activity of Corn Extruded Snacks. Polish Journal of Chemical Technology, 16(3), 7-11. doi:10.2478/pjct-2014-0042

GUMUL, D., ZIOBRO, R., ZIĘBA, T., & RÓJ, E. (2011). THE INFLUENCE OF ADDITION OF DEFATTED BLACKCURRANT SEEDS ON PRO-HEALTH CONSTITUENTS AND TEXTURE OF CEREAL EXTRUDATES. Journal of Food Quality, 34(6), 395-402. doi:10.1111/j.1745-4557.2011.00418.x

Khanal, R. C., Howard, L. R., Brownmiller, C. R., & Prior, R. L. (2009). Influence of Extrusion Processing on Procyanidin Composition and Total Anthocyanin Contents of Blueberry Pomace. Journal of Food Science, 74(2), H52-H58. doi:10.1111/j.1750-3841.2009.01063.x

Khanal, R. C., Howard, L. R., & Prior, R. L. (2009). Procyanidin Content of Grape Seed and Pomace, and Total Anthocyanin Content of Grape Pomace as Affected by Extrusion Processing. Journal of Food Science, 74(6), H174-H182. doi:10.1111/j.1750-3841.2009.01221.x

Hirth, M., Leiter, A., Beck, S. M., & Schuchmann, H. P. (2014). Effect of extrusion cooking process parameters on the retention of bilberry anthocyanins in starch based food. Journal of Food Engineering, 125, 139-146. doi:10.1016/j.jfoodeng.2013.10.034

White, B. L., Howard, L. R., & Prior, R. L. (2010). Polyphenolic Composition and Antioxidant Capacity of Extruded Cranberry Pomace†. Journal of Agricultural and Food Chemistry, 58(7), 4037-4042. doi:10.1021/jf902838b

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem