- -

Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giner-Sanz, Juan José es_ES
dc.contributor.author Sánchez-Rivera, María J. es_ES
dc.contributor.author García Gabaldón, Montserrat es_ES
dc.contributor.author Ortega Navarro, Emma María es_ES
dc.contributor.author Mestre, Sergio es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.date.accessioned 2020-04-29T07:05:47Z
dc.date.available 2020-04-29T07:05:47Z
dc.date.issued 2019-05-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141980
dc.description This is the peer reviewed version of the following article: Giner-Sanz, J. J., Sanchez-Rivera, M. J., Garcia-Gabaldon, M., Ortega, E. M., Mestre, S., & Perez-Herranz, V. (2019). Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes. ChemElectroChem, 6(9), 2430-2437. https://doi.org/10.1002/celc.201801766, which has been published in final form at https://doi.org/10.1002/celc.201801766. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] This work explores the possibility of increasing the active surface of a Sb-doped SnO2 ceramic electrode using CuO as sintering aid, by incorporating petroleum coke as a pore generator. In order to fulfil this goal, three series of (Sb, Sn, Cu)O electrodes with different coke contents were synthetized. The properties of the electrodes, and their microstructure, change significantly as a function of the coke content before sintering. The electrochemical characterization of the synthesized electrodes showed that the coke addition before sintering causes two antagonist effects on the performance of the (Sn, Sb, Cu)O as anodes in electrochemical advanced oxidation processes (EAOP). On one hand, it significantly improves the electrochemical roughness factor of the electrode, solving the densification problem in this way. On the other hand, it worsens the electrochemical behavior of the electrode: narrowing its electrochemical window; and ¿activating¿ it slightly. The addition of coke before sintering changes the kinetic parameters, leading to a kinetic situation in which the accumulation of hydroxyl radicals is slightly lower. A balance must be sought: an intermediate coke content will improve significantly the electrochemical roughness factor of the electrode, but will only worsen slightly its electrochemical behavior, leading to an optimum (Sn, Sb, Cu)O EAOP anode. es_ES
dc.description.sponsorship The authors are very grateful to the Ministerio de Economia y Competitividad (Projects: CTQ2015-65202-C2-1-R and CTQ2015- 65202-C2-2-R) and to the European Regional Development Fund (FEDER), for their economic support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof ChemElectroChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antimony-doped tin oxide electrodes es_ES
dc.subject Ceramic anodes es_ES
dc.subject Electrooxidation process es_ES
dc.subject Petroleum coke es_ES
dc.subject Pore generator es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/celc.201801766 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-2-R/ES/NUEVOS ELECTRODOS CERAMICOS MEJORADOS MEDIANTE NANOTECNOLOGIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-1-R/ES/CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F044/ES/MODIFICACIÓN DE FOTOCATALIZADORES DE ÓXIDOS METÁLICOS NANOESTRUCTURADOS PARA LA ELIMINACIÓN DE FÁRMACOS Y PRODUCCIÓN ENERGÉTICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Giner-Sanz, JJ.; Sánchez-Rivera, MJ.; García Gabaldón, M.; Ortega Navarro, EM.; Mestre, S.; Pérez-Herranz, V. (2019). Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes. ChemElectroChem. 6(9):2430-2437. https://doi.org/10.1002/celc.201801766 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/celc.201801766 es_ES
dc.description.upvformatpinicio 2430 es_ES
dc.description.upvformatpfin 2437 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2196-0216 es_ES
dc.relation.pasarela S\390457 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U., & Wehrli, B. (2010). Global Water Pollution and Human Health. Annual Review of Environment and Resources, 35(1), 109-136. doi:10.1146/annurev-environ-100809-125342 es_ES
dc.description.references Alizadeh Fard, M., & Barkdoll, B. (2018). Effects of oxalate and persulfate addition to Electrofenton and Electrofenton-Fenton processes for oxidation of Ketoprofen: Determination of reactive species and mass balance analysis. Electrochimica Acta, 265, 209-220. doi:10.1016/j.electacta.2018.01.153 es_ES
dc.description.references Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Science of The Total Environment, 409(20), 4141-4166. doi:10.1016/j.scitotenv.2010.08.061 es_ES
dc.description.references Yang, L., Zhang, Z., Liu, J., Huang, L., Jia, L., & Feng, Y. (2018). Influence of Gd Doping on the Structure and Electrocatalytic Performance of TiO2 Nanotube/SnO2 −Sb Nano-coated Electrode. ChemElectroChem, 5(22), 3451-3459. doi:10.1002/celc.201801079 es_ES
dc.description.references Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217-261. doi:10.1016/j.apcatb.2016.08.037 es_ES
dc.description.references Turkay, O., Barışçı, S., Ulusoy, E., Şeker, M. G., & Dimoglo, A. (2018). Anodic oxidation of anti-cancer drug Imatinib on different electrodes: Kinetics, transformation by-products and toxicity assessment. Electrochimica Acta, 263, 400-408. doi:10.1016/j.electacta.2018.01.079 es_ES
dc.description.references A. Kouskouki E. Chatzisymeon D. Mantzavinos Z. Frontistis ChemElectroChem2018 DOI 10.1002/celc.201800971. es_ES
dc.description.references D. Dionisio A. J. Motheo C. Sáez P. Canizares M. A. Rodrigo ChemElectroChem2018 DOI 10.1002/celc.201801332. es_ES
dc.description.references Dos Santos, A. J., Martínez-Huitle, C. A., Sirés, I., & Brillas, E. (2017). Use of Pt and Boron-Doped Diamond Anodes in the Electrochemical Advanced Oxidation of Ponceau SS Diazo Dye in Acidic Sulfate Medium. ChemElectroChem, 5(4), 685-693. doi:10.1002/celc.201701238 es_ES
dc.description.references Silveira, J. E., Garcia-Costa, A. L., Cardoso, T. O., Zazo, J. A., & Casas, J. A. (2017). Indirect decolorization of azo dye Disperse Blue 3 by electro-activated persulfate. Electrochimica Acta, 258, 927-932. doi:10.1016/j.electacta.2017.11.143 es_ES
dc.description.references Pereira, G. F., Silva, B. F., Oliveira, R. V., Coledam, D. A. C., Aquino, J. M., Rocha-Filho, R. C., … Biaggio, S. R. (2017). Comparative electrochemical degradation of the herbicide tebuthiuron using a flow cell with a boron-doped diamond anode and identifying degradation intermediates. Electrochimica Acta, 247, 860-870. doi:10.1016/j.electacta.2017.07.054 es_ES
dc.description.references Farinos, R. M., & Ruotolo, L. A. M. (2017). Comparison of the electrooxidation performance of three-dimensional RVC/PbO2 and boron-doped diamond electrodes. Electrochimica Acta, 224, 32-39. doi:10.1016/j.electacta.2016.12.025 es_ES
dc.description.references Li, H., Long, Y., Zhu, X., Tian, Y., & Ye, J. (2017). Influencing factors and chlorinated byproducts in electrochemical oxidation of bisphenol A with boron-doped diamond anodes. Electrochimica Acta, 246, 1121-1130. doi:10.1016/j.electacta.2017.06.163 es_ES
dc.description.references Li, L., Huang, Z., Fan, X., Zhang, Z., Dou, R., Wen, S., … Hu, Y. (2017). Preparation and Characterization of a Pd modified Ti/SnO 2 -Sb anode and its electrochemical degradation of Ni-EDTA. Electrochimica Acta, 231, 354-362. doi:10.1016/j.electacta.2017.02.072 es_ES
dc.description.references Chaplin, B. P. (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci.: Processes Impacts, 16(6), 1182-1203. doi:10.1039/c3em00679d es_ES
dc.description.references Yang, D., Gu, Y., Yu, X., Lin, Z., Xue, H., & Feng, L. (2018). Nanostructured Ni2 P-C as an Efficient Catalyst for Urea Electrooxidation. ChemElectroChem, 5(4), 659-664. doi:10.1002/celc.201701304 es_ES
dc.description.references Cotillas, S., Llanos, J., Cañizares, P., Clematis, D., Cerisola, G., Rodrigo, M. A., & Panizza, M. (2018). Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochimica Acta, 263, 1-7. doi:10.1016/j.electacta.2018.01.052 es_ES
dc.description.references Poyatos, J. M., Muñio, M. M., Almecija, M. C., Torres, J. C., Hontoria, E., & Osorio, F. (2009). Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water, Air, and Soil Pollution, 205(1-4), 187-204. doi:10.1007/s11270-009-0065-1 es_ES
dc.description.references Sirés, I., Brillas, E., Oturan, M. A., Rodrigo, M. A., & Panizza, M. (2014). Electrochemical advanced oxidation processes: today and tomorrow. A review. Environmental Science and Pollution Research, 21(14), 8336-8367. doi:10.1007/s11356-014-2783-1 es_ES
dc.description.references Bejan, D., Guinea, E., & Bunce, N. J. (2012). On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex® anodes. Electrochimica Acta, 69, 275-281. doi:10.1016/j.electacta.2012.02.097 es_ES
dc.description.references D. A. García-Osorio R. Jaimes J. Vazquez-Arenas R. H. Lara J. Alvarez-Ramirez J. Electrochem. Soc.2017 164 E3321–E3328. es_ES
dc.description.references Fleszar, B., & Po̵szyńska, J. (1985). An attempt to define benzene and phenol electrochemical oxidation mechanism. Electrochimica Acta, 30(1), 31-42. doi:10.1016/0013-4686(85)80055-4 es_ES
dc.description.references Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178 es_ES
dc.description.references Grimm, J., Bessarabov, D., Maier, W., Storck, S., & Sanderson, R. D. (1998). Sol-gel film-preparation of novel electrodes for the electrocatalytic oxidation of organic pollutants in water. Desalination, 115(3), 295-302. doi:10.1016/s0011-9164(98)00048-4 es_ES
dc.description.references Adams, B., Tian, M., & Chen, A. (2009). Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochimica Acta, 54(5), 1491-1498. doi:10.1016/j.electacta.2008.09.034 es_ES
dc.description.references Leite, E. R., Cerri, J. A., Longo, E., Varela, J. A., & Paskocima, C. A. (2001). Sintering of ultrafine undoped SnO2 powder. Journal of the European Ceramic Society, 21(5), 669-675. doi:10.1016/s0955-2219(00)00250-8 es_ES
dc.description.references Scarlat, O., Mihaiu, S., Aldica, G., Groza, J., & Zaharescu, M. (2004). Semiconducting densified SnO2-ceramics obtained by a novel sintering technique. Journal of the European Ceramic Society, 24(6), 1049-1052. doi:10.1016/s0955-2219(03)00387-x es_ES
dc.description.references Scarlat, O., Mihaiu, S., Aldica, G., Zaharescu, M., & Groza, J. R. (2003). Enhanced Properties of Tin(IV) Oxide Based Materials by Field-Activated Sintering. Journal of the American Ceramic Society, 86(6), 893-897. doi:10.1111/j.1151-2916.2003.tb03393.x es_ES
dc.description.references Mihaiu, S., Scarlat, O., Aldica, G., & Zaharescu, M. (2001). SnO2 electroceramics with various additives. Journal of the European Ceramic Society, 21(10-11), 1801-1804. doi:10.1016/s0955-2219(01)00119-4 es_ES
dc.description.references Rubenis, K., Populoh, S., Thiel, P., Yoon, S., Müller, U., & Locs, J. (2017). Thermoelectric properties of dense Sb-doped SnO2 ceramics. Journal of Alloys and Compounds, 692, 515-521. doi:10.1016/j.jallcom.2016.09.062 es_ES
dc.description.references Lorente-Ayza, M.-M., Orts, M. J., Pérez-Herranz, V., & Mestre, S. (2015). Role of starch characteristics in the properties of low-cost ceramic membranes. Journal of the European Ceramic Society, 35(8), 2333-2341. doi:10.1016/j.jeurceramsoc.2015.02.026 es_ES
dc.description.references Lorente-Ayza, M.-M., Mestre, S., Sanz, V., & Sánchez, E. (2016). On the underestimated effect of the starch ash on the characteristics of low cost ceramic membranes. Ceramics International, 42(16), 18944-18954. doi:10.1016/j.ceramint.2016.09.046 es_ES
dc.description.references Ardizzone, S., Fregonara, G., & Trasatti, S. (1990). «Inner» and «outer» active surface of RuO2 electrodes. Electrochimica Acta, 35(1), 263-267. doi:10.1016/0013-4686(90)85068-x es_ES
dc.description.references Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis, 2(8), 1765-1772. doi:10.1021/cs3003098 es_ES
dc.description.references K�tz, R., Stucki, S., & Carcer, B. (1991). Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. Journal of Applied Electrochemistry, 21(1), 14-20. doi:10.1007/bf01103823 es_ES
dc.description.references Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39(11-12), 1857-1862. doi:10.1016/0013-4686(94)85175-1 es_ES
dc.description.references Soderberg, J. N., Co, A. C., Sirk, A. H. C., & Birss, V. I. (2006). Impact of Porous Electrode Properties on the Electrochemical Transfer Coefficient. The Journal of Physical Chemistry B, 110(21), 10401-10410. doi:10.1021/jp060372f es_ES
dc.description.references Liu, B., Wang, C., & Chen, Y. (2018). Surface determination and electrochemical behavior of IrO 2 -RuO 2 -SiO 2 ternary oxide coatings in oxygen evolution reaction application. Electrochimica Acta, 264, 350-357. doi:10.1016/j.electacta.2018.01.141 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell. Journal of Power Sources, 379, 328-337. doi:10.1016/j.jpowsour.2018.01.066 es_ES
dc.description.references Orazem, M. E., & Tribollet, B. (2008). Electrochemical Impedance Spectroscopy. doi:10.1002/9780470381588 es_ES
dc.description.references Agarwal, P., Orazem, M. E., & Garcia‐Rubio, L. H. (1995). Application of Measurement Models to Impedance Spectroscopy: III . Evaluation of Consistency with the Kramers‐Kronig Relations. Journal of The Electrochemical Society, 142(12), 4159-4168. doi:10.1149/1.2048479 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Optimization of the electrochemical impedance spectroscopy measurement parameters for PEM fuel cell spectrum determination. Electrochimica Acta, 174, 1290-1298. doi:10.1016/j.electacta.2015.06.106 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141 es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society, 164(13), H918-H924. doi:10.1149/2.1451713jes es_ES
dc.description.references Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 381, 84-93. doi:10.1016/j.jpowsour.2018.01.093 es_ES
dc.description.references Hrbac, J., Halouzka, V., Trnkova, L., & Vacek, J. (2014). eL-Chem Viewer: A Freeware Package for the Analysis of Electroanalytical Data and Their Post-Acquisition Processing. Sensors, 14(8), 13943-13954. doi:10.3390/s140813943 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem