Mostrar el registro sencillo del ítem
dc.contributor.author | Giner-Sanz, Juan José | es_ES |
dc.contributor.author | Sánchez-Rivera, María J. | es_ES |
dc.contributor.author | García Gabaldón, Montserrat | es_ES |
dc.contributor.author | Ortega Navarro, Emma María | es_ES |
dc.contributor.author | Mestre, Sergio | es_ES |
dc.contributor.author | Pérez-Herranz, Valentín | es_ES |
dc.date.accessioned | 2020-04-29T07:05:47Z | |
dc.date.available | 2020-04-29T07:05:47Z | |
dc.date.issued | 2019-05-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/141980 | |
dc.description | This is the peer reviewed version of the following article: Giner-Sanz, J. J., Sanchez-Rivera, M. J., Garcia-Gabaldon, M., Ortega, E. M., Mestre, S., & Perez-Herranz, V. (2019). Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes. ChemElectroChem, 6(9), 2430-2437. https://doi.org/10.1002/celc.201801766, which has been published in final form at https://doi.org/10.1002/celc.201801766. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] This work explores the possibility of increasing the active surface of a Sb-doped SnO2 ceramic electrode using CuO as sintering aid, by incorporating petroleum coke as a pore generator. In order to fulfil this goal, three series of (Sb, Sn, Cu)O electrodes with different coke contents were synthetized. The properties of the electrodes, and their microstructure, change significantly as a function of the coke content before sintering. The electrochemical characterization of the synthesized electrodes showed that the coke addition before sintering causes two antagonist effects on the performance of the (Sn, Sb, Cu)O as anodes in electrochemical advanced oxidation processes (EAOP). On one hand, it significantly improves the electrochemical roughness factor of the electrode, solving the densification problem in this way. On the other hand, it worsens the electrochemical behavior of the electrode: narrowing its electrochemical window; and ¿activating¿ it slightly. The addition of coke before sintering changes the kinetic parameters, leading to a kinetic situation in which the accumulation of hydroxyl radicals is slightly lower. A balance must be sought: an intermediate coke content will improve significantly the electrochemical roughness factor of the electrode, but will only worsen slightly its electrochemical behavior, leading to an optimum (Sn, Sb, Cu)O EAOP anode. | es_ES |
dc.description.sponsorship | The authors are very grateful to the Ministerio de Economia y Competitividad (Projects: CTQ2015-65202-C2-1-R and CTQ2015- 65202-C2-2-R) and to the European Regional Development Fund (FEDER), for their economic support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | ChemElectroChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Antimony-doped tin oxide electrodes | es_ES |
dc.subject | Ceramic anodes | es_ES |
dc.subject | Electrooxidation process | es_ES |
dc.subject | Petroleum coke | es_ES |
dc.subject | Pore generator | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.title | Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/celc.201801766 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-2-R/ES/NUEVOS ELECTRODOS CERAMICOS MEJORADOS MEDIANTE NANOTECNOLOGIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-1-R/ES/CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F044/ES/MODIFICACIÓN DE FOTOCATALIZADORES DE ÓXIDOS METÁLICOS NANOESTRUCTURADOS PARA LA ELIMINACIÓN DE FÁRMACOS Y PRODUCCIÓN ENERGÉTICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Giner-Sanz, JJ.; Sánchez-Rivera, MJ.; García Gabaldón, M.; Ortega Navarro, EM.; Mestre, S.; Pérez-Herranz, V. (2019). Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes. ChemElectroChem. 6(9):2430-2437. https://doi.org/10.1002/celc.201801766 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/celc.201801766 | es_ES |
dc.description.upvformatpinicio | 2430 | es_ES |
dc.description.upvformatpfin | 2437 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 2196-0216 | es_ES |
dc.relation.pasarela | S\390457 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U., & Wehrli, B. (2010). Global Water Pollution and Human Health. Annual Review of Environment and Resources, 35(1), 109-136. doi:10.1146/annurev-environ-100809-125342 | es_ES |
dc.description.references | Alizadeh Fard, M., & Barkdoll, B. (2018). Effects of oxalate and persulfate addition to Electrofenton and Electrofenton-Fenton processes for oxidation of Ketoprofen: Determination of reactive species and mass balance analysis. Electrochimica Acta, 265, 209-220. doi:10.1016/j.electacta.2018.01.153 | es_ES |
dc.description.references | Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Science of The Total Environment, 409(20), 4141-4166. doi:10.1016/j.scitotenv.2010.08.061 | es_ES |
dc.description.references | Yang, L., Zhang, Z., Liu, J., Huang, L., Jia, L., & Feng, Y. (2018). Influence of Gd Doping on the Structure and Electrocatalytic Performance of TiO2 Nanotube/SnO2 −Sb Nano-coated Electrode. ChemElectroChem, 5(22), 3451-3459. doi:10.1002/celc.201801079 | es_ES |
dc.description.references | Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217-261. doi:10.1016/j.apcatb.2016.08.037 | es_ES |
dc.description.references | Turkay, O., Barışçı, S., Ulusoy, E., Şeker, M. G., & Dimoglo, A. (2018). Anodic oxidation of anti-cancer drug Imatinib on different electrodes: Kinetics, transformation by-products and toxicity assessment. Electrochimica Acta, 263, 400-408. doi:10.1016/j.electacta.2018.01.079 | es_ES |
dc.description.references | A. Kouskouki E. Chatzisymeon D. Mantzavinos Z. Frontistis ChemElectroChem2018 DOI 10.1002/celc.201800971. | es_ES |
dc.description.references | D. Dionisio A. J. Motheo C. Sáez P. Canizares M. A. Rodrigo ChemElectroChem2018 DOI 10.1002/celc.201801332. | es_ES |
dc.description.references | Dos Santos, A. J., Martínez-Huitle, C. A., Sirés, I., & Brillas, E. (2017). Use of Pt and Boron-Doped Diamond Anodes in the Electrochemical Advanced Oxidation of Ponceau SS Diazo Dye in Acidic Sulfate Medium. ChemElectroChem, 5(4), 685-693. doi:10.1002/celc.201701238 | es_ES |
dc.description.references | Silveira, J. E., Garcia-Costa, A. L., Cardoso, T. O., Zazo, J. A., & Casas, J. A. (2017). Indirect decolorization of azo dye Disperse Blue 3 by electro-activated persulfate. Electrochimica Acta, 258, 927-932. doi:10.1016/j.electacta.2017.11.143 | es_ES |
dc.description.references | Pereira, G. F., Silva, B. F., Oliveira, R. V., Coledam, D. A. C., Aquino, J. M., Rocha-Filho, R. C., … Biaggio, S. R. (2017). Comparative electrochemical degradation of the herbicide tebuthiuron using a flow cell with a boron-doped diamond anode and identifying degradation intermediates. Electrochimica Acta, 247, 860-870. doi:10.1016/j.electacta.2017.07.054 | es_ES |
dc.description.references | Farinos, R. M., & Ruotolo, L. A. M. (2017). Comparison of the electrooxidation performance of three-dimensional RVC/PbO2 and boron-doped diamond electrodes. Electrochimica Acta, 224, 32-39. doi:10.1016/j.electacta.2016.12.025 | es_ES |
dc.description.references | Li, H., Long, Y., Zhu, X., Tian, Y., & Ye, J. (2017). Influencing factors and chlorinated byproducts in electrochemical oxidation of bisphenol A with boron-doped diamond anodes. Electrochimica Acta, 246, 1121-1130. doi:10.1016/j.electacta.2017.06.163 | es_ES |
dc.description.references | Li, L., Huang, Z., Fan, X., Zhang, Z., Dou, R., Wen, S., … Hu, Y. (2017). Preparation and Characterization of a Pd modified Ti/SnO 2 -Sb anode and its electrochemical degradation of Ni-EDTA. Electrochimica Acta, 231, 354-362. doi:10.1016/j.electacta.2017.02.072 | es_ES |
dc.description.references | Chaplin, B. P. (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci.: Processes Impacts, 16(6), 1182-1203. doi:10.1039/c3em00679d | es_ES |
dc.description.references | Yang, D., Gu, Y., Yu, X., Lin, Z., Xue, H., & Feng, L. (2018). Nanostructured Ni2 P-C as an Efficient Catalyst for Urea Electrooxidation. ChemElectroChem, 5(4), 659-664. doi:10.1002/celc.201701304 | es_ES |
dc.description.references | Cotillas, S., Llanos, J., Cañizares, P., Clematis, D., Cerisola, G., Rodrigo, M. A., & Panizza, M. (2018). Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochimica Acta, 263, 1-7. doi:10.1016/j.electacta.2018.01.052 | es_ES |
dc.description.references | Poyatos, J. M., Muñio, M. M., Almecija, M. C., Torres, J. C., Hontoria, E., & Osorio, F. (2009). Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water, Air, and Soil Pollution, 205(1-4), 187-204. doi:10.1007/s11270-009-0065-1 | es_ES |
dc.description.references | Sirés, I., Brillas, E., Oturan, M. A., Rodrigo, M. A., & Panizza, M. (2014). Electrochemical advanced oxidation processes: today and tomorrow. A review. Environmental Science and Pollution Research, 21(14), 8336-8367. doi:10.1007/s11356-014-2783-1 | es_ES |
dc.description.references | Bejan, D., Guinea, E., & Bunce, N. J. (2012). On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex® anodes. Electrochimica Acta, 69, 275-281. doi:10.1016/j.electacta.2012.02.097 | es_ES |
dc.description.references | D. A. García-Osorio R. Jaimes J. Vazquez-Arenas R. H. Lara J. Alvarez-Ramirez J. Electrochem. Soc.2017 164 E3321–E3328. | es_ES |
dc.description.references | Fleszar, B., & Po̵szyńska, J. (1985). An attempt to define benzene and phenol electrochemical oxidation mechanism. Electrochimica Acta, 30(1), 31-42. doi:10.1016/0013-4686(85)80055-4 | es_ES |
dc.description.references | Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178 | es_ES |
dc.description.references | Grimm, J., Bessarabov, D., Maier, W., Storck, S., & Sanderson, R. D. (1998). Sol-gel film-preparation of novel electrodes for the electrocatalytic oxidation of organic pollutants in water. Desalination, 115(3), 295-302. doi:10.1016/s0011-9164(98)00048-4 | es_ES |
dc.description.references | Adams, B., Tian, M., & Chen, A. (2009). Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochimica Acta, 54(5), 1491-1498. doi:10.1016/j.electacta.2008.09.034 | es_ES |
dc.description.references | Leite, E. R., Cerri, J. A., Longo, E., Varela, J. A., & Paskocima, C. A. (2001). Sintering of ultrafine undoped SnO2 powder. Journal of the European Ceramic Society, 21(5), 669-675. doi:10.1016/s0955-2219(00)00250-8 | es_ES |
dc.description.references | Scarlat, O., Mihaiu, S., Aldica, G., Groza, J., & Zaharescu, M. (2004). Semiconducting densified SnO2-ceramics obtained by a novel sintering technique. Journal of the European Ceramic Society, 24(6), 1049-1052. doi:10.1016/s0955-2219(03)00387-x | es_ES |
dc.description.references | Scarlat, O., Mihaiu, S., Aldica, G., Zaharescu, M., & Groza, J. R. (2003). Enhanced Properties of Tin(IV) Oxide Based Materials by Field-Activated Sintering. Journal of the American Ceramic Society, 86(6), 893-897. doi:10.1111/j.1151-2916.2003.tb03393.x | es_ES |
dc.description.references | Mihaiu, S., Scarlat, O., Aldica, G., & Zaharescu, M. (2001). SnO2 electroceramics with various additives. Journal of the European Ceramic Society, 21(10-11), 1801-1804. doi:10.1016/s0955-2219(01)00119-4 | es_ES |
dc.description.references | Rubenis, K., Populoh, S., Thiel, P., Yoon, S., Müller, U., & Locs, J. (2017). Thermoelectric properties of dense Sb-doped SnO2 ceramics. Journal of Alloys and Compounds, 692, 515-521. doi:10.1016/j.jallcom.2016.09.062 | es_ES |
dc.description.references | Lorente-Ayza, M.-M., Orts, M. J., Pérez-Herranz, V., & Mestre, S. (2015). Role of starch characteristics in the properties of low-cost ceramic membranes. Journal of the European Ceramic Society, 35(8), 2333-2341. doi:10.1016/j.jeurceramsoc.2015.02.026 | es_ES |
dc.description.references | Lorente-Ayza, M.-M., Mestre, S., Sanz, V., & Sánchez, E. (2016). On the underestimated effect of the starch ash on the characteristics of low cost ceramic membranes. Ceramics International, 42(16), 18944-18954. doi:10.1016/j.ceramint.2016.09.046 | es_ES |
dc.description.references | Ardizzone, S., Fregonara, G., & Trasatti, S. (1990). «Inner» and «outer» active surface of RuO2 electrodes. Electrochimica Acta, 35(1), 263-267. doi:10.1016/0013-4686(90)85068-x | es_ES |
dc.description.references | Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis, 2(8), 1765-1772. doi:10.1021/cs3003098 | es_ES |
dc.description.references | K�tz, R., Stucki, S., & Carcer, B. (1991). Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. Journal of Applied Electrochemistry, 21(1), 14-20. doi:10.1007/bf01103823 | es_ES |
dc.description.references | Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39(11-12), 1857-1862. doi:10.1016/0013-4686(94)85175-1 | es_ES |
dc.description.references | Soderberg, J. N., Co, A. C., Sirk, A. H. C., & Birss, V. I. (2006). Impact of Porous Electrode Properties on the Electrochemical Transfer Coefficient. The Journal of Physical Chemistry B, 110(21), 10401-10410. doi:10.1021/jp060372f | es_ES |
dc.description.references | Liu, B., Wang, C., & Chen, Y. (2018). Surface determination and electrochemical behavior of IrO 2 -RuO 2 -SiO 2 ternary oxide coatings in oxygen evolution reaction application. Electrochimica Acta, 264, 350-357. doi:10.1016/j.electacta.2018.01.141 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell. Journal of Power Sources, 379, 328-337. doi:10.1016/j.jpowsour.2018.01.066 | es_ES |
dc.description.references | Orazem, M. E., & Tribollet, B. (2008). Electrochemical Impedance Spectroscopy. doi:10.1002/9780470381588 | es_ES |
dc.description.references | Agarwal, P., Orazem, M. E., & Garcia‐Rubio, L. H. (1995). Application of Measurement Models to Impedance Spectroscopy: III . Evaluation of Consistency with the Kramers‐Kronig Relations. Journal of The Electrochemical Society, 142(12), 4159-4168. doi:10.1149/1.2048479 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Optimization of the electrochemical impedance spectroscopy measurement parameters for PEM fuel cell spectrum determination. Electrochimica Acta, 174, 1290-1298. doi:10.1016/j.electacta.2015.06.106 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141 | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society, 164(13), H918-H924. doi:10.1149/2.1451713jes | es_ES |
dc.description.references | Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 381, 84-93. doi:10.1016/j.jpowsour.2018.01.093 | es_ES |
dc.description.references | Hrbac, J., Halouzka, V., Trnkova, L., & Vacek, J. (2014). eL-Chem Viewer: A Freeware Package for the Analysis of Electroanalytical Data and Their Post-Acquisition Processing. Sensors, 14(8), 13943-13954. doi:10.3390/s140813943 | es_ES |