- -

Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes

Mostrar el registro completo del ítem

Giner-Sanz, JJ.; Sánchez-Rivera, MJ.; García Gabaldón, M.; Ortega Navarro, EM.; Mestre, S.; Pérez-Herranz, V. (2019). Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes. ChemElectroChem. 6(9):2430-2437. https://doi.org/10.1002/celc.201801766

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/141980

Ficheros en el ítem

Metadatos del ítem

Título: Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes
Autor: Giner-Sanz, Juan José Sánchez-Rivera, María J. García Gabaldón, Montserrat Ortega Navarro, Emma María Mestre, Sergio Pérez-Herranz, Valentín
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] This work explores the possibility of increasing the active surface of a Sb-doped SnO2 ceramic electrode using CuO as sintering aid, by incorporating petroleum coke as a pore generator. In order to fulfil this goal, ...[+]
Palabras clave: Antimony-doped tin oxide electrodes , Ceramic anodes , Electrooxidation process , Petroleum coke , Pore generator
Derechos de uso: Reserva de todos los derechos
Fuente:
ChemElectroChem. (eissn: 2196-0216 )
DOI: 10.1002/celc.201801766
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/celc.201801766
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-2-R/ES/NUEVOS ELECTRODOS CERAMICOS MEJORADOS MEDIANTE NANOTECNOLOGIA/
info:eu-repo/grantAgreement/MINECO//CTQ2015-65202-C2-1-R/ES/CARACTERIZACION ELECTROQUIMICA DE ELECTRODOS CERAMICOS Y APLICACION A PROCESOS ELECTROQUIMICOS DE OXIDACION AVANZADA/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F044/ES/MODIFICACIÓN DE FOTOCATALIZADORES DE ÓXIDOS METÁLICOS NANOESTRUCTURADOS PARA LA ELIMINACIÓN DE FÁRMACOS Y PRODUCCIÓN ENERGÉTICA/
Descripción: This is the peer reviewed version of the following article: Giner-Sanz, J. J., Sanchez-Rivera, M. J., Garcia-Gabaldon, M., Ortega, E. M., Mestre, S., & Perez-Herranz, V. (2019). Improvement of the Electrochemical Behavior of (Sb, Sn, Cu)O Ceramic Electrodes as Electrochemical Advanced Oxidation Anodes. ChemElectroChem, 6(9), 2430-2437. https://doi.org/10.1002/celc.201801766, which has been published in final form at https://doi.org/10.1002/celc.201801766. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Agradecimientos:
The authors are very grateful to the Ministerio de Economia y Competitividad (Projects: CTQ2015-65202-C2-1-R and CTQ2015- 65202-C2-2-R) and to the European Regional Development Fund (FEDER), for their economic support.[+]
Tipo: Artículo

References

Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U., & Wehrli, B. (2010). Global Water Pollution and Human Health. Annual Review of Environment and Resources, 35(1), 109-136. doi:10.1146/annurev-environ-100809-125342

Alizadeh Fard, M., & Barkdoll, B. (2018). Effects of oxalate and persulfate addition to Electrofenton and Electrofenton-Fenton processes for oxidation of Ketoprofen: Determination of reactive species and mass balance analysis. Electrochimica Acta, 265, 209-220. doi:10.1016/j.electacta.2018.01.153

Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Science of The Total Environment, 409(20), 4141-4166. doi:10.1016/j.scitotenv.2010.08.061 [+]
Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U., & Wehrli, B. (2010). Global Water Pollution and Human Health. Annual Review of Environment and Resources, 35(1), 109-136. doi:10.1146/annurev-environ-100809-125342

Alizadeh Fard, M., & Barkdoll, B. (2018). Effects of oxalate and persulfate addition to Electrofenton and Electrofenton-Fenton processes for oxidation of Ketoprofen: Determination of reactive species and mass balance analysis. Electrochimica Acta, 265, 209-220. doi:10.1016/j.electacta.2018.01.153

Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Science of The Total Environment, 409(20), 4141-4166. doi:10.1016/j.scitotenv.2010.08.061

Yang, L., Zhang, Z., Liu, J., Huang, L., Jia, L., & Feng, Y. (2018). Influence of Gd Doping on the Structure and Electrocatalytic Performance of TiO2 Nanotube/SnO2 −Sb Nano-coated Electrode. ChemElectroChem, 5(22), 3451-3459. doi:10.1002/celc.201801079

Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217-261. doi:10.1016/j.apcatb.2016.08.037

Turkay, O., Barışçı, S., Ulusoy, E., Şeker, M. G., & Dimoglo, A. (2018). Anodic oxidation of anti-cancer drug Imatinib on different electrodes: Kinetics, transformation by-products and toxicity assessment. Electrochimica Acta, 263, 400-408. doi:10.1016/j.electacta.2018.01.079

A. Kouskouki E. Chatzisymeon D. Mantzavinos Z. Frontistis ChemElectroChem2018 DOI 10.1002/celc.201800971.

D. Dionisio A. J. Motheo C. Sáez P. Canizares M. A. Rodrigo ChemElectroChem2018 DOI 10.1002/celc.201801332.

Dos Santos, A. J., Martínez-Huitle, C. A., Sirés, I., & Brillas, E. (2017). Use of Pt and Boron-Doped Diamond Anodes in the Electrochemical Advanced Oxidation of Ponceau SS Diazo Dye in Acidic Sulfate Medium. ChemElectroChem, 5(4), 685-693. doi:10.1002/celc.201701238

Silveira, J. E., Garcia-Costa, A. L., Cardoso, T. O., Zazo, J. A., & Casas, J. A. (2017). Indirect decolorization of azo dye Disperse Blue 3 by electro-activated persulfate. Electrochimica Acta, 258, 927-932. doi:10.1016/j.electacta.2017.11.143

Pereira, G. F., Silva, B. F., Oliveira, R. V., Coledam, D. A. C., Aquino, J. M., Rocha-Filho, R. C., … Biaggio, S. R. (2017). Comparative electrochemical degradation of the herbicide tebuthiuron using a flow cell with a boron-doped diamond anode and identifying degradation intermediates. Electrochimica Acta, 247, 860-870. doi:10.1016/j.electacta.2017.07.054

Farinos, R. M., & Ruotolo, L. A. M. (2017). Comparison of the electrooxidation performance of three-dimensional RVC/PbO2 and boron-doped diamond electrodes. Electrochimica Acta, 224, 32-39. doi:10.1016/j.electacta.2016.12.025

Li, H., Long, Y., Zhu, X., Tian, Y., & Ye, J. (2017). Influencing factors and chlorinated byproducts in electrochemical oxidation of bisphenol A with boron-doped diamond anodes. Electrochimica Acta, 246, 1121-1130. doi:10.1016/j.electacta.2017.06.163

Li, L., Huang, Z., Fan, X., Zhang, Z., Dou, R., Wen, S., … Hu, Y. (2017). Preparation and Characterization of a Pd modified Ti/SnO 2 -Sb anode and its electrochemical degradation of Ni-EDTA. Electrochimica Acta, 231, 354-362. doi:10.1016/j.electacta.2017.02.072

Chaplin, B. P. (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci.: Processes Impacts, 16(6), 1182-1203. doi:10.1039/c3em00679d

Yang, D., Gu, Y., Yu, X., Lin, Z., Xue, H., & Feng, L. (2018). Nanostructured Ni2 P-C as an Efficient Catalyst for Urea Electrooxidation. ChemElectroChem, 5(4), 659-664. doi:10.1002/celc.201701304

Cotillas, S., Llanos, J., Cañizares, P., Clematis, D., Cerisola, G., Rodrigo, M. A., & Panizza, M. (2018). Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochimica Acta, 263, 1-7. doi:10.1016/j.electacta.2018.01.052

Poyatos, J. M., Muñio, M. M., Almecija, M. C., Torres, J. C., Hontoria, E., & Osorio, F. (2009). Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water, Air, and Soil Pollution, 205(1-4), 187-204. doi:10.1007/s11270-009-0065-1

Sirés, I., Brillas, E., Oturan, M. A., Rodrigo, M. A., & Panizza, M. (2014). Electrochemical advanced oxidation processes: today and tomorrow. A review. Environmental Science and Pollution Research, 21(14), 8336-8367. doi:10.1007/s11356-014-2783-1

Bejan, D., Guinea, E., & Bunce, N. J. (2012). On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex® anodes. Electrochimica Acta, 69, 275-281. doi:10.1016/j.electacta.2012.02.097

D. A. García-Osorio R. Jaimes J. Vazquez-Arenas R. H. Lara J. Alvarez-Ramirez J. Electrochem. Soc.2017 164 E3321–E3328.

Fleszar, B., & Po̵szyńska, J. (1985). An attempt to define benzene and phenol electrochemical oxidation mechanism. Electrochimica Acta, 30(1), 31-42. doi:10.1016/0013-4686(85)80055-4

Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178

Grimm, J., Bessarabov, D., Maier, W., Storck, S., & Sanderson, R. D. (1998). Sol-gel film-preparation of novel electrodes for the electrocatalytic oxidation of organic pollutants in water. Desalination, 115(3), 295-302. doi:10.1016/s0011-9164(98)00048-4

Adams, B., Tian, M., & Chen, A. (2009). Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochimica Acta, 54(5), 1491-1498. doi:10.1016/j.electacta.2008.09.034

Leite, E. R., Cerri, J. A., Longo, E., Varela, J. A., & Paskocima, C. A. (2001). Sintering of ultrafine undoped SnO2 powder. Journal of the European Ceramic Society, 21(5), 669-675. doi:10.1016/s0955-2219(00)00250-8

Scarlat, O., Mihaiu, S., Aldica, G., Groza, J., & Zaharescu, M. (2004). Semiconducting densified SnO2-ceramics obtained by a novel sintering technique. Journal of the European Ceramic Society, 24(6), 1049-1052. doi:10.1016/s0955-2219(03)00387-x

Scarlat, O., Mihaiu, S., Aldica, G., Zaharescu, M., & Groza, J. R. (2003). Enhanced Properties of Tin(IV) Oxide Based Materials by Field-Activated Sintering. Journal of the American Ceramic Society, 86(6), 893-897. doi:10.1111/j.1151-2916.2003.tb03393.x

Mihaiu, S., Scarlat, O., Aldica, G., & Zaharescu, M. (2001). SnO2 electroceramics with various additives. Journal of the European Ceramic Society, 21(10-11), 1801-1804. doi:10.1016/s0955-2219(01)00119-4

Rubenis, K., Populoh, S., Thiel, P., Yoon, S., Müller, U., & Locs, J. (2017). Thermoelectric properties of dense Sb-doped SnO2 ceramics. Journal of Alloys and Compounds, 692, 515-521. doi:10.1016/j.jallcom.2016.09.062

Lorente-Ayza, M.-M., Orts, M. J., Pérez-Herranz, V., & Mestre, S. (2015). Role of starch characteristics in the properties of low-cost ceramic membranes. Journal of the European Ceramic Society, 35(8), 2333-2341. doi:10.1016/j.jeurceramsoc.2015.02.026

Lorente-Ayza, M.-M., Mestre, S., Sanz, V., & Sánchez, E. (2016). On the underestimated effect of the starch ash on the characteristics of low cost ceramic membranes. Ceramics International, 42(16), 18944-18954. doi:10.1016/j.ceramint.2016.09.046

Ardizzone, S., Fregonara, G., & Trasatti, S. (1990). «Inner» and «outer» active surface of RuO2 electrodes. Electrochimica Acta, 35(1), 263-267. doi:10.1016/0013-4686(90)85068-x

Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis, 2(8), 1765-1772. doi:10.1021/cs3003098

K�tz, R., Stucki, S., & Carcer, B. (1991). Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. Journal of Applied Electrochemistry, 21(1), 14-20. doi:10.1007/bf01103823

Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39(11-12), 1857-1862. doi:10.1016/0013-4686(94)85175-1

Soderberg, J. N., Co, A. C., Sirk, A. H. C., & Birss, V. I. (2006). Impact of Porous Electrode Properties on the Electrochemical Transfer Coefficient. The Journal of Physical Chemistry B, 110(21), 10401-10410. doi:10.1021/jp060372f

Liu, B., Wang, C., & Chen, Y. (2018). Surface determination and electrochemical behavior of IrO 2 -RuO 2 -SiO 2 ternary oxide coatings in oxygen evolution reaction application. Electrochimica Acta, 264, 350-357. doi:10.1016/j.electacta.2018.01.141

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell. Journal of Power Sources, 379, 328-337. doi:10.1016/j.jpowsour.2018.01.066

Orazem, M. E., & Tribollet, B. (2008). Electrochemical Impedance Spectroscopy. doi:10.1002/9780470381588

Agarwal, P., Orazem, M. E., & Garcia‐Rubio, L. H. (1995). Application of Measurement Models to Impedance Spectroscopy: III . Evaluation of Consistency with the Kramers‐Kronig Relations. Journal of The Electrochemical Society, 142(12), 4159-4168. doi:10.1149/1.2048479

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Optimization of the electrochemical impedance spectroscopy measurement parameters for PEM fuel cell spectrum determination. Electrochimica Acta, 174, 1290-1298. doi:10.1016/j.electacta.2015.06.106

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society, 164(13), H918-H924. doi:10.1149/2.1451713jes

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 381, 84-93. doi:10.1016/j.jpowsour.2018.01.093

Hrbac, J., Halouzka, V., Trnkova, L., & Vacek, J. (2014). eL-Chem Viewer: A Freeware Package for the Analysis of Electroanalytical Data and Their Post-Acquisition Processing. Sensors, 14(8), 13943-13954. doi:10.3390/s140813943

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem